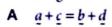
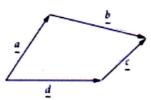
1 Four vectors, a, b, c and d, are shown in the diagram. Which one of the following statements is true?



$$\mathbf{B} \quad a+b=c+d$$

C
$$a+b+c+d=0$$
 D $b+c=a+d$

$$D \quad b+c=a+d$$



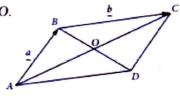
2 In the parallelogram ABCD shown, the point of intersection of the diagonals is O. The vector \overrightarrow{OD} is equal to:

$$B = \frac{1}{2}(a+b)$$

C
$$\frac{1}{2}b - a$$

A
$$\frac{1}{2}(\underline{a}-\underline{b})$$
 B $\frac{1}{2}(\underline{a}+\underline{b})$ $\overrightarrow{OD} = \frac{1}{2}\overrightarrow{DD}$ C $\frac{1}{2}\underline{b}-\underline{a}$ \overrightarrow{D} $\frac{1}{2}(\underline{b}-\underline{a})$ $\overrightarrow{OD} = \frac{1}{2}(\overrightarrow{BA}+\overrightarrow{AD})$

$$S_0 \overrightarrow{OD} = \frac{1}{2} \left(-\alpha + b \right) = \frac{1}{2} \left(b - \alpha \right)$$



3 If vector \underline{a} is represented by the ordered pair (-2, 3), then the vector $-3\underline{a}$ is represented by the ordered pair:

4 The vector that runs from the point (-3, 1) to the point (3, -2) can be represented by the column vector:

$$A = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

$$A \begin{pmatrix} 6 \\ 3 \end{pmatrix} \qquad B \begin{pmatrix} 6 \\ -3 \end{pmatrix} \qquad C \begin{pmatrix} -6 \\ 3 \end{pmatrix}$$

$$C = \begin{pmatrix} -6 \\ 3 \end{pmatrix}$$

$$\mathsf{D} \quad \left(\begin{array}{c} 0 \\ -3 \end{array} \right)$$

5 Which one of the following vectors is parallel to the vector $\underline{f} = -6\underline{i} + 4\underline{j}$?

A $\underline{a} = 24\underline{i} - 16\underline{j}$ B $\underline{b} = 3\underline{i} + 2\underline{j}$ C $\underline{c} = -24\underline{i} - 16\underline{j}$ D $\underline{d} = -3\underline{i} - 2\underline{j}$

$$\mathbf{A} \quad a = 24i - 16j$$

$$\mathbf{B} \quad \underline{b} = 3\underline{i} + 2\underline{j}$$

C
$$c = -24i - 16j$$

$$D \quad d = -3i - 2$$

as
$$24 = (4) \times (-6)$$
 and $-16 = (-4) \times 4$

and
$$-16 =$$

$$-16 = (-4) \times 4$$

6 Which one of the following vectors is parallel to the vector $\underline{a} = -3\underline{i} + 7\underline{j}$ and has a magnitude of $2\sqrt{58}$?

A
$$-24i + 28j$$

B
$$-\frac{3}{2}i + \frac{7}{2}j$$

$$D = -6\underline{i} + 14\underline{j}$$

A
$$-24\underline{i} + 28\underline{j}$$
 B $-\frac{3}{2}\underline{i} + \frac{7}{2}\underline{j}$ C $3\underline{i} - 7\underline{j}$ D $-6\underline{j}$

$$|\vec{A}| = \sqrt{24^2 + 28^2} = \sqrt{1360} = \sqrt{2^4 \times 5 \times 17} = 4\sqrt{85} \text{ so not } A$$

$$|\vec{B}| = \sqrt{(\frac{3}{2})^2 + (\frac{7}{2})^2} = \sqrt{\frac{9}{4} + \frac{49}{4}} = \sqrt{\frac{58}{4}} = \frac{1}{2}\sqrt{58} \text{ so not } \vec{B}$$

$$|\vec{C}| = \sqrt{3^2 + 7^2} = \sqrt{9 + 49} = \sqrt{58} \text{ so not } \vec{C}$$

$$|\vec{C}| = \sqrt{3^2 + 7^2} = \sqrt{9 + 49} = \sqrt{58}$$
 so not $|\vec{C}|$

$$|\vec{D}| = \sqrt{6^2 + 14^2} = \sqrt{36 + 196} = \sqrt{232} = \sqrt{2^3 \times 29} = 2\sqrt{58}$$
 so \boxed{D}

7 Given position vectors $\overrightarrow{OA} = -3i + 4j$ and $\overrightarrow{OB} = 4i + 3j$, what is the value of $|\overrightarrow{AB}|$?

$$|\overrightarrow{AB}| = \sqrt{7^2 + 1^2} = \sqrt{49 + 1} = \sqrt{50} = \sqrt{2 \times 5^2} = 5\sqrt{2}$$

8 If $\underline{a} = -4\underline{i} + 2\underline{j}$ and $\underline{b} = \underline{i} - 4\underline{j}$, then $2\underline{a} - \underline{b}$ is:

A
$$-5i-2j$$
 B $-6i+10j$ C $-9i+8j$ D $-10i-4j$
 $2\vec{a}-\vec{b}=2(-4\vec{c}+2\vec{j})-(\vec{c}-4\vec{j})$
 $2\vec{a}-\vec{b}=-8\vec{c}+4\vec{j}-\vec{c}+4\vec{j}=-9\vec{c}+8\vec{j}$

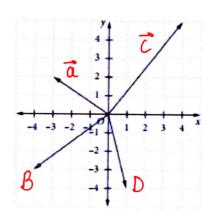
9 What is the magnitude of the vector a = 4i - 2j?

A 2 B
$$2\sqrt{3}$$
 C $2\sqrt{5}$ D 20
 $|\vec{\alpha}| = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20} = \sqrt{2^2 \times 5} = 2\sqrt{5}$

10 Which of the following vectors is parallel to the vector 2i + 3j and has a magnitude of $2\sqrt{13}$?

A
$$-4i+6j$$
 B $4i-6j$ C $6i+9j$ D $-4i-6i$ Vector D as $-4=(-2)\times 2$ $|\vec{B}| = \sqrt{16+36} = 2\sqrt{13}$ $|\vec{C}| = \sqrt{36+81} = \sqrt{117} = 3\sqrt{13}$ and $-6=(-2)\times 3$

- 19 Label the following vectors that have been drawn on the Cartesian plane:
 - • a the position vector of (−3, 2)
 - \overrightarrow{OB} where B is $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$
 - c the position vector of $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$
 - \overrightarrow{OD} where D is (1, -4)



26 Find the exact values of the unknown pronumerals in the following vector equations.

(a)
$$(2a-3b)\underline{i}-2b\underline{j}=5\underline{i}-12\underline{j}$$

(b)
$$(2f+5)\underline{i} + (8-7g)\underline{j} = f(3\underline{i}-2\underline{j}) + 2g(\underline{i}+4\underline{j})$$

(c) $(a^2 - 9a)i + (2b^3 + 1)j = 10i - 5j$ (list multiple solutions)

a)
$$\begin{cases} 2a, -3b = 5 \\ -2b = -12 \end{cases} \iff \begin{cases} b = 6 \\ 2a - 3 \times 6 = 5 \end{cases} \iff \begin{cases} b = 6 \\ 2a = 23 \end{cases} \iff \begin{cases} a = 23/2 \\ b = 6 \end{cases}$$
b) $\begin{cases} 21 + 5 = 31 + 29 \\ 8 - 79 = -21 + 89 \end{cases} \iff \begin{cases} 5 = 1 + 29 \\ 8 = -21 + 159 \end{cases} \iff \begin{cases} 8 = -21 + 159 \\ 9 = 18/19 \end{cases}$

$$\begin{cases} 5 = \int_{0}^{4} + 2g \\ |8| = |9|g \end{cases} \qquad \begin{cases} g = \frac{18}{19} \\ | = 5 - 2x \frac{18}{19} \end{cases} \Leftrightarrow \begin{cases} g = \frac{18}{19} \\ | = 59/19 \end{cases}$$

$$c) \begin{cases} a^{2} - 9a = 10 \\ 2b^{3} + 1 = -5 \end{cases} \Leftrightarrow \begin{cases} a^{2} - 9a - 10 = 0 \\ b^{3} = -3 \end{cases} \Leftrightarrow \begin{cases} a^{2} - 9a - 10 = 0 \\ a^{2} - 9a - 10 = 0 \end{cases}$$

roots are
$$a_1 = -1$$
 and $a_2 = 10$
to $a_1 = -1$ or $a_2 = 10$, and $b = -\sqrt[3]{3}$

27 Consider the vector $\underline{a} = -9\underline{i} - 3\underline{j}$.

(a) Find â.

(b) Find the vector b in the direction of a with a magnitude of 5.

a)
$$|\vec{a}| = \sqrt{9^2 + 3^2} = \sqrt{81 + 9} = \sqrt{90} = 3\sqrt{10}$$

So $\vec{\alpha} = \frac{1}{3\sqrt{10}} \left[-9\vec{c} - 3\vec{j} \right] = -\frac{1}{\sqrt{10}} \left[3\vec{c} + \vec{j} \right]$
b) $\vec{b} = 5 \times \left[-\frac{1}{\sqrt{10}} \left(3\vec{c} + \vec{j} \right) \right] = -\sqrt{\frac{5}{2}} \left(3\vec{c} + \vec{j} \right)$

28 Find the scalar product $a \bullet b$, given the following pairs of vectors.

(a)
$$a = -4i + j$$
 and $b = 2i + 7j$ (b) $a = 3i - 7j$ and $b = 6i - j$
a) $\vec{a} \cdot \vec{b} = (-4\vec{c} + \vec{j}) \cdot (2\vec{c} + 7\vec{j}) = (-4) \times 2 + 1 \times 7 = -8 + 7 = -1$
b) $\vec{a} \cdot \vec{b} = (3\vec{c} - 7\vec{j}) \cdot (6\vec{c} - \vec{j}) = 3 \times 6 + (-7) \times (-1)$
 $\vec{a} \cdot \vec{b} = 18 + 7 = 25$

29 Calculate the scalar product and hence show that the vectors $\underline{a} = -3\underline{i} + 5\underline{j}$ and $\underline{b} = 10\underline{i} + 6\underline{j}$ are perpendicular.

$$\vec{a} \cdot \vec{b} = (-3\vec{c} + 5\vec{j}) \cdot (10\vec{c} + 6\vec{j})$$

 $\vec{a} \cdot \vec{b} = (-3)x(10) + 5x6 = -30 + 30 = 0$
 $\vec{a} \cdot \vec{b} = 0$ hence \vec{a} and \vec{b} are perpendicular

30 For each of the following pairs of vectors, find the scalar projection of a onto b.

(a)
$$a = 3i - 4j$$
 and $b = 6i + 3j$ (b) $a = -5i + 2j$ and $b = i - 7j$
a) $\vec{a} \cdot \vec{b} = (3\vec{c} - 4\vec{j}) \cdot (6\vec{c} + 3\vec{j}) = |8 - 12 = 6$

The scalar projection of \vec{a} onto \vec{b} is $\vec{a} \cdot \vec{b}$.

$$|\vec{b}| = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}$$
so it's $\frac{6}{3\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$
b) $\vec{a} \cdot \vec{b} = (-5\vec{c} + 2\vec{j}) \cdot (\vec{c} - 7\vec{j})$

$$\vec{a} \cdot \vec{b} = -5 - 14 = -19$$

$$|\vec{b}| = \sqrt{1^2 + 7^2} = \sqrt{50} = 5\sqrt{2}$$
So the scalar projection of \vec{a} onto \vec{b} is $\frac{-19}{5\sqrt{2}} = -\frac{19\sqrt{2}}{10}$

- 31 For a = 2i 5j and b = 4i + j, find:
 - (a) the vector projection of a onto b

a)
$$\vec{a} \cdot \vec{b} = 8 - 5 = 3$$

$$|\vec{b}| = \sqrt{4^2 + 1^2} = \sqrt{17}$$

So the scalar projection is 3

$$\frac{5}{|\mathcal{F}|} = \frac{4\mathcal{I} + \vec{J}}{\sqrt{17}}$$

So the vector populiar of a

onto
$$f'$$
 is = $\frac{3}{\sqrt{17}} \left[\frac{4C+1}{\sqrt{17}} \right]$

(b) the vector projection of a perpendicular to b.

$$\vec{a} = \vec{a_{\parallel}} + \vec{a_{\perp}}$$

$$\vec{a} = \left[\frac{3}{17}(4z + \vec{j})\right] + \vec{a_1} = 2z - 5\vec{j}$$

$$\vec{a}_{\perp} = \begin{bmatrix} 2 - \frac{12}{17} \end{bmatrix} \vec{c} + \begin{bmatrix} -5 - \frac{3}{17} \end{bmatrix} \vec{J}$$

$$\vec{Q}_{\perp} = \frac{22}{17}\vec{C} - \frac{88}{17}\vec{J}$$

$$\overrightarrow{\Delta_{\perp}} = \frac{22}{17} \left[\overrightarrow{L} - 4 \overrightarrow{J} \right]$$

- 32 The points A, B and C have coordinates (2, -5), (5, 9) and (-9, 12) respectively.
 - (a) Find the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} in column vector form.
- (b) Find \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} .

- (c) Show that ΔABC is an isosceles triangle.
- (d) Find the coordinates of a point D such that ABCD forms a rhombus.

(e) Find the coordinates of the point of intersection of the diagonals of the rhombus ABCD.

a)
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = -(2\overrightarrow{C} - 5\overrightarrow{J}) + (5\overrightarrow{C} + 9\overrightarrow{J}) = 3\overrightarrow{C} + 14\overrightarrow{J}$$

 $\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} = -\overrightarrow{OB} + \overrightarrow{OC} = -(5\overrightarrow{C} + 9\overrightarrow{J}) + (-9\overrightarrow{C} + 12\overrightarrow{J}) = -14\overrightarrow{C} + 3\overrightarrow{J}$

$$\begin{array}{lll}
BC = BO + OC = -0B + OC = -(05 + 0) + (-9i + 12j) = -11i + 17j \\
AC = AB + OC = -0A + OC = -(2i - 5j) + (-9i + 12j) = -11i + 17j \\
b) |AB| = \sqrt{205} = \sqrt{5 \times 41} \qquad |BC| = \sqrt{205} \qquad AC = \sqrt{11^2 + 17^2} = \sqrt{410}
\end{array}$$

b)
$$|\vec{AB}| = \sqrt{205} = \sqrt{5 \times 41}$$

$$\overrightarrow{AC} = \sqrt{11^2 + 17^2} = \sqrt{410}$$

9
$$|\overrightarrow{AB}| = |\overrightarrow{BC}| = \sqrt{205}$$
 .: $\triangle ABC$ is isosceles.

d)
$$\overrightarrow{AD} = \overrightarrow{BC}$$
 so $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{OA} + \overrightarrow{BC}$

$$\overrightarrow{OD} = [2\vec{c} - 5\vec{j}] + [-14\vec{c} + 3\vec{j}] = -12\vec{c} - 2\vec{j}$$

e)
$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AR} = [2\overrightarrow{L} - 5\overrightarrow{J}] + \frac{1}{2}\overrightarrow{AC} = [2\overrightarrow{L} - 5\overrightarrow{J}] + \frac{1}{2}[-11\overrightarrow{C} + 17\overrightarrow{J}]$$

$$\vec{OR} = \begin{bmatrix} 2 - 11 \\ 2 \end{bmatrix} \vec{c} + \begin{bmatrix} -5 + 17 \\ 2 \end{bmatrix} \vec{J} = -3.5 \vec{c} + 3.5 \vec{J}$$

m M/-3.5,3.5)

33 (a) If
$$g = -4ei + 2ej = 0$$
 and $|g|^2 = 40$, find the exact value of e . (b) Hence, find g .

(c) Find the vector g that is parallel to g with $|g| = 10$.

(d) If $e = 4ie^{-3} + ie^{-3} + ie^{-3$

- 34 Consider two vectors $\underline{a} = 2\underline{i} 5j$ and $\underline{b} = -3\underline{i} j$.
 - (a) Find the scalar projection of a in the direction of b.
- (b) Find the vector projection of a onto b.
- (c) Find the vector projection of a perpendicular to the direction of b.
- (d) Hence, express the vector $\underline{a} = 2\underline{i} 5\underline{j}$ in terms of projections parallel to and perpendicular to $\underline{b} = -3\underline{i} j$.

a)
$$\vec{a} \cdot \vec{b} = (2\vec{c} - 5\vec{j}) \cdot (-3\vec{c} - \vec{j}) = -6 + 5 = -1$$

 $|\vec{b}| = \sqrt{3^2 + 1^2} = \sqrt{10}$ so the scalar projection of \vec{a} on \vec{b} is $-1/\sqrt{10}$

b)
$$\frac{1}{15} = \frac{-3\overline{1} - \overline{j}}{\sqrt{10}}$$
 so the vector projection of \overline{a} onto \overline{b} is $\frac{1}{\sqrt{10}} \left[\frac{-3\overline{1} - \overline{j}}{\sqrt{10}} \right]$

which is
$$\frac{1}{10}\begin{bmatrix}3\vec{c}+\vec{j}\end{bmatrix}$$
 \vec{c} $\vec{c$

which is
$$\frac{1}{10}\begin{bmatrix}3C+J\\\end{bmatrix}$$

 $9\vec{a} = \vec{a}_{ii} + \vec{a}_{1}$ so $\vec{a}_{1} = \vec{a} - \vec{a}_{ii} = \begin{bmatrix}2\vec{c} - 5\vec{j}\\\end{bmatrix} - \frac{1}{10}\begin{bmatrix}3\vec{c} + \vec{j}\end{bmatrix}$

$$\vec{a}_{1} = \vec{17}\vec{c} - 5\vec{1}\vec{j} = \frac{17}{10}\vec{c} - 3\vec{j}$$

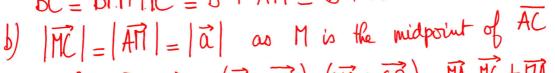
d)
$$\vec{a} = \frac{1}{10} [3\vec{c} + \vec{j}] + \frac{17}{10} [\vec{c} - 3\vec{j}]$$

1/6 \$\frac{1}{5}\$

- 35 $\triangle ABC$ is right-angled with M being the midpoint of the hypotenuse AC, as shown. Let $\overline{AM} = a$ and $\overline{BM} = b$.
 - (a) Find \overline{AB} and \overline{BC} in terms of a and b.
 - (b) Prove that M is equidistant from the three vertices of ΔABC.

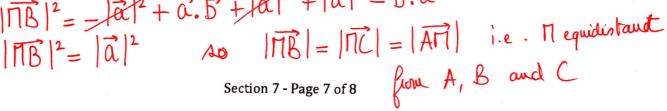
a)
$$\overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MB} = \overrightarrow{a} - \overrightarrow{BM} = \overrightarrow{a} - \overrightarrow{b}$$

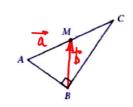
 $\overrightarrow{BC} = \overrightarrow{BM} + \overrightarrow{MC} = \overrightarrow{b} + \overrightarrow{AM} = \overrightarrow{b} + \overrightarrow{a}$



$$|\overrightarrow{MB}|^2 = |\overrightarrow{MB} \cdot |\overrightarrow{MB}| = |\overrightarrow{MA} + |\overrightarrow{AB}| \cdot (|\overrightarrow{MC} + |\overrightarrow{CB}|) = |\overrightarrow{MA} \cdot |\overrightarrow{MC}| + |\overrightarrow{MA} \cdot |\overrightarrow{CB}| + |\overrightarrow{AB} \cdot |\overrightarrow{CB}| + |\overrightarrow{$$

$$|\Pi B|^2 = -\alpha \cdot \alpha = \alpha \cdot (-1)^{-1} \cdot \alpha / (-1)^$$





36 OABC is a parallelogram where $\overline{OA} = a$ and $\overline{OC} = c$. M and N are the midpoints of \overline{AB} and \overline{BC} respectively.

- (a) Draw a diagram of parallelogram OABC, showing the given vectors and midpoints.
- **(b)** Find the vectors \overrightarrow{OM} and \overrightarrow{ON} in terms of \underline{a} and \underline{c} and show them on your diagram.
- (c) Hence find the vector \overrightarrow{MN} in terms of a and c.
- (d) Find vector \overrightarrow{AC} in terms of \underline{a} and \underline{c} and show this on your diagram.
- (e) P is a point on \overrightarrow{OM} such that $\overrightarrow{OP} = \frac{2}{3} \overrightarrow{OM}$. Find the vector \overrightarrow{OP} in terms of \underline{a} and \underline{c} .
- (f) Q is a point on \overrightarrow{ON} such that $\overrightarrow{OQ} = \frac{2}{3} \overrightarrow{ON}$. Find the vector \overrightarrow{OQ} in terms of \underline{a} and \underline{c} .
- (g) Show that vector \overline{MN} is parallel to and half the magnitude of \overline{AC} .
- (h) Find vectors \overrightarrow{AP} , \overrightarrow{PQ} and \overrightarrow{QC} , and hence prove that the diagonal \overrightarrow{AC} is trisected at P and Q.

(h) Find vectors
$$\overrightarrow{AP}$$
, \overrightarrow{PQ} and \overrightarrow{QC} , and hence prove that the diagonal \overrightarrow{AC} is trisected at \overrightarrow{P} and \overrightarrow{QC} .

b) $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{APP} = \overrightarrow{AP} + \overrightarrow{DC}$
 \overrightarrow{C}
 $\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{CN} = \overrightarrow{C} + \overrightarrow{DC}$
 \overrightarrow{C}
 \overrightarrow{C}
 $\overrightarrow{MN} = \overrightarrow{NO} + \overrightarrow{ON} = \overrightarrow{C} + \overrightarrow{DC}$
 \overrightarrow{C}
 \overrightarrow{C}
 $\overrightarrow{MN} = \overrightarrow{NO} + \overrightarrow{ON} = \overrightarrow{C} + \overrightarrow{DC}$
 \overrightarrow{C}
 \overrightarrow{C}
 $\overrightarrow{MN} = \overrightarrow{DC} + \overrightarrow{CN} = \overrightarrow{C} + \overrightarrow{DC}$
 \overrightarrow{C}
 \overrightarrow

h) $\overrightarrow{AP} = \overrightarrow{AO} + \overrightarrow{OP} = -\overrightarrow{a} + \frac{1}{3}[\overrightarrow{2a} + \overrightarrow{c}] = -\frac{1}{3}\overrightarrow{a} + \frac{1}{3}\overrightarrow{c} = \frac{1}{3}[\overrightarrow{c} - \overrightarrow{a}]$ $\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ} = -\overrightarrow{OP} + \overrightarrow{OQ} = -\frac{1}{3} [2\vec{a} + \vec{c}] + \frac{1}{3} [2\vec{c} + \vec{a}]$ $\therefore \overrightarrow{PQ} = -\frac{1}{3}\vec{a} + \frac{1}{3}\vec{c} = \frac{1}{3} (\vec{c} - \vec{a})$

 $\vec{QC} = \vec{QO} + \vec{OC} = -\vec{OQ} + \vec{OC} = -\frac{1}{3} [2\vec{C} + \vec{a}] + \vec{C} = \frac{1}{3} [\vec{C} - \vec{a}]$

 $\therefore \overrightarrow{AP} = \overrightarrow{PQ} = \overrightarrow{QC}$ And as A, P, Q, C are colinear. that means the diagonal AC is tissected at Pand Q. Section 7-Page 8 of 8