- 1 A cube of ice has an edge length of 10 cm. It melts so that its volume decreases at a constant rate and the block remains a cube. If the edge length measures 5 cm after 70 minutes, find:
 - (a) the rate at which the volume decreases
- **(b)** the volume at any time *t*.

- **2** A machine manufactures items at a variable rate given by $\frac{dQ}{dt} = 2t + 1$, $t \ge 0$, where *Q* is the number of items manufactured in a time *t* minutes.
 - (a) At what rate is the machine working: (i) initially (ii) after 10 minutes?
 - (b) What is the total number of items manufactured in the first 10 minutes?

3 The sluice gates of a dam are operated by an automatic program that controls the flow of water out of the dam. The program is set so that *t* hours after 7 am the flow of water will be given by

$$\frac{dV}{dt} = 500 - 15t^2 + t^3 \text{ megalitres (ML) per hour.}$$

- (a) If no water flows from the dam before 7 am, calculate:
 - (i) the flow of the water at 9 am
 - (ii) the total volume of water released between 7 am and 9 am
- **(b) (i)** Sketch $\frac{dV}{dt} = 500 15t^2 + t^3$ for $0 \le t \le 10$.
 - (ii) When does the flow of water stop?
 - (iii) If the sluice gates close at the moment when $\frac{dV}{dt} = 0$, how much water has been released altogether?

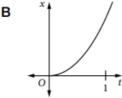
- **5** A body starts from O and moves in a straight line. At any time t its velocity is given by $\dot{x} = 6t 4$. Indicate whether each statement below is correct or incorrect.
 - (a) $x = 3t^2 4t + C$ (b) $x = 3t^2 4t$ (c) $\ddot{x} = 3t^2 4t$

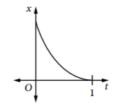
- (d) $\ddot{x} = 6$

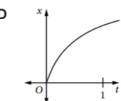
- **6** A body starts from O and moves in a straight line. At any time t, its velocity is $t^2 4t^3$. Find, in terms of t:
 - (a) the displacement x
- (b) the acceleration.

- 7 The velocity $v \text{ m s}^{-1}$ at time t seconds ($t \ge 0$) of a body moving in a straight line is given by $v = 6t^2 + 6t 12$. Its initial displacement is 7 m from O. Find:
 - (a) the displacement and acceleration at any time t
 - (b) the acceleration when the velocity is zero
- (c) the initial velocity and acceleration.


- 9 A body is projected vertically upwards with an initial velocity of $30\,\mathrm{m\,s^{-1}}$. It rises with a deceleration of $10\,\mathrm{m\,s^{-2}}$. Find:
 - (a) its velocity at any time t
- **(b)** its height h m above the point of projection at any time t
- (c) the greatest height reached
- (d) the time taken to return to the point of projection.


14 Two cars *A* and *B* travel along a straight road in the same direction. Their respective distances *x* km from a fixed point *O* at any time *t* hours are given by the following rules:


A:
$$x = 50t - 20t^2$$
 B: $x = 80t^2 + 20t$


- (a) Calculate each car's speed at the point O.
- (b) At what time are the cars travelling at the same speed?
- (c) Both cars reach a point Q at the same time. Calculate the distance from O to Q.
- (d) A third car, travelling at uniform speed, is 2 km ahead of *A* and *B* when they pass the point *O*. If this car arrives at *Q* at the same time as *A* and *B*, find a rule connecting *x* and *t* for it.

16 A particle is moving so that, for 0 < t < 1, its velocity is positive and its acceleration is negative. Which graph could represent the displacement function of this particle?

- 21 A particle moves in a straight line so that at time t its displacement from a fixed origin is x and its velocity is v.
 - (a) If its acceleration is $2\cos t$, and v=1 and x=0 when t=0, find x in terms of t.
 - **(b)** If its acceleration is $-3e^{-t}$ and v = 0 when t = 0, find the time at which v = -2.

23 The acceleration of a particle moving in a straight line is given by $\frac{d^2x}{dt^2} = 12\cos 2t$. Initially v = 0 and x = 6. Find its velocity v and displacement x at any time t seconds and sketch the graph of the displacement. How many times does the particle change direction in the first 10 seconds?