- **1** For each of the following pairs of vectors, find the scalar projection of \underline{a} onto \underline{b} .
- (a) a = 4i j and b = 3i + 4j (b) a = 4i + 3j and b = 3i + 2j (c) a = 8i + 3j and b = -3i + 8j

- **2** For each of the following pairs of vectors, find the vector projections of \underline{a} onto \underline{b} .
- (a) a = 4i + 3j and b = 3i + 2j (b) a = 4i j and b = 3i + 4j (c) a = 8i + 4j and b = -3i + 6j

- **3** For each of the following pairs of vectors, find the vector projections of \underline{a} perpendicular to \underline{b} .
- (a) a = 4i + 3j and b = 3i + 2j (b) a = 4i j and b = 3i + 4j (c) a = 8i + 4j and b = -3i + 6j

4 For the following vectors, find the scalar projection of *b* onto *a*.

(a)
$$a = 4i + 3j$$
 and $b = 3i + 2j$

(b)
$$a = 4i - j$$
 and $b = 3i + 4j$

6 For $\underline{a} = -2\underline{i} - 3\underline{j}$ and $\underline{b} = -2\underline{i} + 2\underline{j}$, the scalar projection of \underline{a} onto \underline{b} is:

A
$$\frac{\sqrt{2}}{2}$$

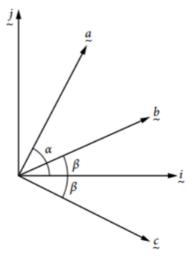
$$\mathsf{B} \quad \frac{-\sqrt{2}}{2}$$

A
$$\frac{\sqrt{2}}{2}$$
 B $\frac{-\sqrt{2}}{2}$ C $\frac{-2\sqrt{13}}{13}$

D
$$\frac{2\sqrt{13}}{13}$$

7 The vector projection of $3\underline{i} + 2\underline{j}$ onto $-\underline{i} + 2\underline{j}$ is $\frac{1}{5}(-\underline{i} + 2\underline{j})$. What is the vector projection of $3\underline{i} + 2\underline{j}$ perpendicular to -i + 2j?

A
$$\frac{8}{5} \left(3i + 2j \right)$$


A
$$\frac{8}{5}(3\underline{i}+2\underline{j})$$
 B $\frac{8}{5}(-\underline{i}+2\underline{j})$ C $\frac{8}{5}(2\underline{i}+\underline{j})$ D $2\underline{i}+\underline{j}$

C
$$\frac{8}{5}(2i+j)$$

$$D \quad 2\underline{i} + \underline{j}$$

- **9** Consider two vectors $\underline{a} = 3\underline{i} 4\underline{j}$ and $\underline{b} = 2\underline{i} 2\underline{j}$.
 - (a) Find the scalar projection of \underline{a} onto \underline{b} . (b) Find the vector projection of \underline{a} onto \underline{b} .
 - (c) Find the vector projection of \underline{a} perpendicular to the direction of \underline{b} .
 - (d) Hence, express the vector $\underline{a} = 3\underline{i} 4\underline{j}$ in terms of projections onto and perpendicular to $\underline{b} = 2\underline{i} 2\underline{j}$.

- 11 a, b and c are unit vectors in the Cartesian plane.
 - (a) Show that $\underline{a} = \cos \alpha \underline{i} + \sin \alpha \underline{j}$.
 - **(b)** Derive similar expressions for b = and c.
 - (c) Find $a \bullet b$ and $a \bullet c$.
 - (d) Hence deduce the compound angle formulas $\cos(\alpha \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$ and $\cos(\alpha + \beta) = \cos\alpha\cos\beta \sin\alpha\sin\beta$.

