MATHEMATICAL INDUCTION, HARDER QUESTIONS

In this section, you will construct harder mathematical induction proofs in a variety of situations. You will also study a slightly different form of induction in which you need to assume $S(1), S(2), \dots, S(k)$ are true in order to prove that S(k + 1) is true.

Induction question for n > 1

Example 17

Use mathematical induction to prove that $n^3 - n$ is a multiple of 6 for $n \ge 2$.

Solution

Step 1n = 2: Exp = $2^3 - 2 = 8 - 2 = 6$, which is a multiple of 6.Hence the result is true for n = 2.Step 2Assume the result is true for n = k, i.e. assume that $k^3 - k = 6M$, where M is a positive integer.Prove the result is true for n = k + 1, i.e. prove that $(k + 1)^3 - (k + 1)$ is a multiple of 6.Exp = $(k + 1)^3 - (k + 1)$ $= k^3 + 3k^2 + 3k + 1 - k - 1$ $= k^3 - k + 3k^2 + 3k$ = 6M + 3k(k + 1)Now since k is a positive integer then k(k + 1) is even so that k(k + 1) = 2N, where N is an integer.Hence Exp = $6M + 3 \times 2N$ = 6(M + N) which is a multiple of 6.

Step 3 The result is true for n = k + 1 if it is true for n = k. But the result is true for n = 2, hence it is true for n = 2 + 1 and by the principle of mathematical induction it is true for all $n \ge 2$.

MATHEMATICAL INDUCTION, HARDER QUESTIONS

Sigma notation

Series questions to be proved by induction are often written using sigma notation, Σ , to save space.

For example:
$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n \times (n+1) = \sum_{r=1}^{n} r(r+1)$$

Hence: $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + k \times (k+1) = \sum_{r=1}^{k} r(r+1)$
And: $1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + k \times (k+1) + (k+1)(k+2) = \sum_{r=1}^{k+1} r(r+1)$

r=1

Example 18 Prove that $\sum_{n=1}^{n} r(r+1) = \frac{n(n+1)(n+2)}{3}$. Solution Step 1 n = 1: LHS = $\sum_{r=1}^{1} r(r+1) = 1 \times 2 = 2;$ $RHS = \frac{1 \times 2 \times 3}{3} = 2 = LHS$ Result is true when n = 1. Step 2 Assume the result is true for n = k, i.e. assume that $\sum_{k=1}^{k} r(r+1) = \frac{k(k+1)(k+2)}{3}$. Prove the result is true for n = k + 1, i.e. prove that $\sum_{r=1}^{k+1} r(r+1) = \frac{(k+1)(k+2)(k+3)}{3}$. $LHS = \sum_{r=1}^{k+1} r(r+1)$ $=\sum_{r=1}^{k}r(r+1)+(k+1)(k+2)$ $=\frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$ $=(k+1)(k+2)\left(\frac{k}{3}+1\right)$ $= (k+1)(k+2)\left(\frac{k+3}{3}\right)$ $=\frac{(k+1)(k+2)(k+3)}{3}$ = RHS

Step 3 The result is true for n = k + 1 if it is true for n = k. But the result is true for n = 1, hence it is true for n = 1 + 1 and by the principle of mathematical induction it is true for all $n \ge 1$.

MATHEMATICAL INDUCTION, HARDER QUESTIONS

Example 19

Prove by induction that $(2^2 - 1)(3^2 - 1)...(n^2 - 1) = \frac{(n!)^2(n+1)}{2n}$ for all integers $n \ge 2$. Solution Note that this involves a product of terms rather than a sum of terms. Let S(n) be the statement that $(2^2 - 1)(3^2 - 1)...(n^2 - 1) = \frac{(n!)^2(n+1)}{2n}$ for integers $n \ge 2$. Step 1 Prove that S(2) is true. LHS = $(2^2 - 1) = 3$ RHS = $\frac{(2!)^2 (2+1)}{2 \times 2} = 3$ LHS = RHS \therefore S(2) is tru Step 2 Assume S(k) is true for a positive integer $k \ge 2$. i.e. assume that $(2^2 - 1)(3^2 - 1)\dots(k^2 - 1) = \frac{(k!)^2(k+1)}{2k}$ [a] Now prove that S(k + 1) is true if S(k) is true. i.e. prove that $(2^2 - 1)(3^2 - 1)...([k+1]^2 - 1) = \frac{((k+1)!)^2((k+1)+1)}{2(k+1)}$ $=\frac{((k+1)!)^2(k+2)}{2(k+1)}$ LHS = $(2^2 - 1)(3^2 - 1)...(k^2 - 1)$ ([k + 1]² - 1) $=\frac{(k!)^2(k+1)}{2k} \times (k^2 + 2k)$ using [a]: $=\frac{(k!)^2(k+1)}{2k} \times k(k+2)$ $=\frac{(k!)^2(k+1)(k+2)}{2}$ $=\frac{(k!)^2(k+1)(k+2)}{2} \times \frac{(k+1)}{(k+1)}$ $=\frac{((k+1)!)^2(k+2)}{2(k+1)} = RHS$ Step 3 Conclusion S(k+1) is true if S(k) is true (Step 2) S(2) is true (Step 1)

: by induction, S(n) is true for all integers $n \ge 2$.

If the question in Example 19 had been to prove by induction that $(2^2 - 1)(3^2 - 1) \dots (n^2 - 1) = \frac{(n!)^2(n+1)}{2n}$ for all integers $n \ge 1$, then the proof would not have worked.

Step 1: n = 1, LHS = $(1^2 - 1) = 0$

RHS = $\frac{(1!)^2 \times 2}{2}$ = 1, which is not equal to the LHS.

Since the result cannot be proved for n = 1 then the process of proof by mathematical induction will not work.