- 1 A cube of ice has an edge length of 10 cm. It melts so that its volume decreases at a constant rate and the block remains a cube. If the edge length measures 5 cm after 70 minutes, find:
 - (a) the rate at which the volume decreases
- (b) the volume at any time t.

a)
$$\frac{dV}{dt} = C$$

$$V = \int C dt$$

$$V = \int C dt$$
, so $V = Ct + K$. Bur $V = a^3$

Bur
$$V=a^3$$

$$\frac{dt}{dt}$$

so $a^3 = Ct + K$ At $t = 0$ $a = 10$ so $K = 10^3 = 1,000$

At
$$t=0$$

$$K = 10^3 = 1,000$$

$$a = 5$$

At
$$t=70$$
 $a=5$ so $125=C \times 70+1000$ $C=-12.5$

$$C = -12.5$$

$$So_{\frac{dV}{dt}} = -12.5$$

b)
$$V_{=} - 12.5 \pm 1,000$$

V has to be positive so
$$-125t + 1000 > 0$$

So $0 < t < 80$.

- 2 A machine manufactures items at a variable rate given by $\frac{dQ}{dt} = 2t + 1$, $t \ge 0$, where Q is the number of items manufactured in a time t minutes.
 - (a) At what rate is the machine working: (i) initially
- (ii) after 10 minutes?
- (b) What is the total number of items manufactured in the first 10 minutes?

$$\frac{dQ}{dt} =$$

%) at
$$t=0$$
 $\frac{dQ}{dt}=1$ ii) at $t=10$ $\frac{dQ}{dt}=2\times 10+1=21$

$$Q_{10} = \int_{0}^{10} \frac{dQ}{dt} dt = \int_{0}^{10} (2t+1) dt$$

$$t = \int_{0}^{\infty} (2t+1) dt$$

$$Q_{10} = [t^2 + t]_0^{10} = 100 + 10 - (0) = 110 items$$

3 The sluice gates of a dam are operated by an automatic program that controls the flow of water out of the dam. The program is set so that t hours after 7 am the flow of water will be given by

$$\frac{dV}{dt}$$
 = 500 – 15 t^2 + t^3 megalitres (ML) per hour.

- (a) If no water flows from the dam before 7 am, calculate:
 - (i) the flow of the water at 9 am
 - (ii) the total volume of water released between 7 am and 9 am
- **(b) (i)** Sketch $\frac{dV}{dt} = 500 15t^2 + t^3$ for $0 \le t \le 10$.
 - (ii) When does the flow of water stop?
 - (iii) If the sluice gates close at the moment when $\frac{dV}{dt} = 0$, how much water has been released altogether?

a) i)
$$\frac{dV}{dt} = 500 - 15 \times 2^2 + 2^3 = 448 \text{ ML/hr}$$

ii)
$$V_{7-9} = \int_{7}^{2} 500 - 15t^2 + t^3 dt = \left[500t - \frac{15t^3}{3} + \frac{44}{4} \right]_{0}^{2}$$

$$= 500 \times 2 - 5 \times 2^3 + \frac{2^4}{4} = 964 \text{ NL}$$

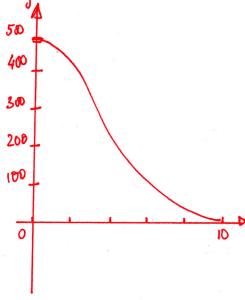
b) for
$$t = 10$$
 $\frac{dV}{dt} = 500 - 15 \times 100 + 1000 = 0$.

$$\frac{dV}{dt^2} = 0 \text{ for } -30t + 3t^2 = 0$$

$$4t^2 = 30 t = \sqrt{10}$$
At that point

$$500 - 15 \times 10 + 10\sqrt{10} = 382$$

iii)
$$\int_{0}^{10} 500 - 15t^{2} + t^{3} dt = \left[500t - 5t^{3} + \frac{t^{4}}{4} \right]_{0}^{10}$$



$$= 500 \times 10 - 5 \times 10^{3} + \frac{10^{4}}{4}$$

$$=5000 - 5000 + 2,500 = 2,500 ML$$

5 A body starts from O and moves in a straight line. At any time t its velocity is given by $\dot{x} = 6t - 4$. Indicate whether each statement below is correct or incorrect.

(a)
$$x = 3t^2 - 4t + C$$

YES WIRC=0

(b)
$$x = 3t^2 - 4t$$

(c)
$$\ddot{x} = 3t^2 - 4t$$

$$(\mathbf{d}) \ddot{x} = 6$$

and
$$\alpha(t) = 6\frac{t^2}{2} - 4t + C = 3t^2 - 4t + C$$

at
$$t=0$$
 $x=0$

$$\chi = 0$$

no
$$C=0$$
 $x=3t^2-4t$

6 A body starts from O and moves in a straight line. At any time t, its velocity is $t^2 - 4t^3$. Find, in terms of t:

(a) the displacement
$$x$$

$$\dot{z} = t^2 - 4t^3$$

$$\chi = \frac{t^3}{3} - 4\frac{t^4}{4} + C = \frac{t^3}{3} - t^4 + C$$

$$\ddot{x} = 2E - 12E^2$$

At
$$t=0$$
 , $x=0$

At
$$t=0$$
, $x=0$ so $C=0$.
 $x=\frac{t^3}{2}-t^4$ and $\ddot{x}=2t\left[1-6t\right]$

- 7 The velocity $v \text{ m s}^{-1}$ at time t seconds ($t \ge 0$) of a body moving in a straight line is given by $v = 6t^2 + 6t 12$. Its initial displacement is 7 m from O. Find:
 - (a) the displacement and acceleration at any time t
 - (b) the acceleration when the velocity is zero (c) the initial velocity and acceleration.

a)
$$\chi = 6 \frac{t^3}{3} + 6 \frac{t^2}{2} - 12t + C$$
 $\ddot{\chi} = 12t + 6$

$$\ddot{x} = 12t + 6$$

At
$$t=0$$

At
$$t=0$$
 $x=7$ so $7=2\times0^3+3\times0^2-12\times0+C$

$$x = 2t^3 + 3t^2 - 12t + 7$$

b) When
$$V=0$$
, $6t^2+6t-12=0$ or $t^2+t-2=0$ $t=1$

At
$$t=1$$
 $x = 12 \times 1 + 6 = 18 \text{ m/s}^{-2}$

At
$$t=0$$
 $V=-12 ms^{-1}$

$$\ddot{x} = 6 \text{ ms}^{-2}$$

- 9 A body is projected vertically upwards with an initial velocity of 30 m s⁻¹. It rises with a deceleration of 10 m s⁻². Find:
 - (a) its velocity at any time t
- (b) its height h m above the point of projection at any time t
- (c) the greatest height reached
- (d) the time taken to return to the point of projection.

a)
$$\frac{1}{2} = -10$$
 so $\frac{1}{2} = -10 + 0$

$$\dot{x} = 30$$

$$po$$
 $C = 30$

$$\dot{x} = 30$$
 so $C = 30$ $\dot{x} = -10t + 30$

b)
$$x = -10\frac{t^2}{2} + 30t + K = -5t^2 + 30t + K$$

At $t = 0$ $x = 0$ so $K = 0$, i.e. $x = -5t^2 + 30t$

$$x = 0$$

$$x = -5t^2 + 30t$$

$$-10t+30=0$$

$$-10t+30=0$$
 i.e. $t=3$ s.

At that time
$$x = -5 \times 3^2 + 30 \times 3$$

$$x = 45 \, \text{m}$$

d)
$$\alpha = 0$$
 when

$$\alpha = 0$$
 when $-5t^2 + 30t = 0$

$$505t(-t+6)=0$$

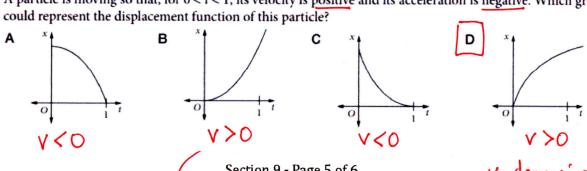
so either
$$t=0$$
 or $t=6$.

$$t = 6$$

14 Two cars A and B travel along a straight road in the same direction. Their respective distances x km from a fixed point O at any time t hours are given by the following rules:

A: $x = 50t - 20t^2$ B: $x = 80t^2 + 20t$

- (a) Calculate each car's speed at the point O.
- (b) At what time are the cars travelling at the same speed?
- (c) Both cars reach a point Q at the same time. Calculate the distance from O to Q.
- (d) A third car, travelling at uniform speed, is 2 km ahead of A and B when they pass the point O. If this car arrives at Q at the same time as A and B, find a rule connecting x and t for it.
- so at t=0, $\dot{x}_{A}=50 \,\mathrm{km}\,\mathrm{kr}^{-1}$ $\dot{\alpha}_{A} = 50 - 40t$ a) for A: $\dot{z}_{B} = 160 t + 20$ so at t = 0, $\dot{z}_{B} = 20 \text{ km hr}$
- $\dot{x}_{A} = \dot{x}_{B}$ when 50 40t = 160t + 20t = 3/20 = 0.15 houror 9 minutes a= 200t = 30
- $x_A = x_B$ when $50t 20t^2 = 80t^2 + 20t$ 5-2t=8t+2 t = 3/10 = 0.3 how or 18 minutes= 10 t = 3
 - At t=0.3 $x = 50 \times 0.3 20 \times 0.3^2 = 13.2$ km
- So xc = Ct + K 80 K=2 $\chi_c = Ct + 2$
- $\chi_c = 2$
- $13.2 = C \times 0.3 + 2$ $\chi_{c} = 13.2$ t = 0.310
- So $C = \frac{11.2}{0.2} = \frac{112}{3}$
- 16 A particle is moving so that, for 0 < t < 1, its velocity is positive and its acceleration is negative. Which graph could represent the displacement function of this particle?



- 21 A particle moves in a straight line so that at time t its displacement from a fixed origin is x and its velocity is v.
 - (a) If its acceleration is $2\cos t$, and v = 1 and x = 0 when t = 0, find x in terms of t.
 - **(b)** If its acceleration is $-3e^{-t}$ and v = 0 when t = 0, find the time at which v = -2.

a)
$$\ddot{x} = 2 \cot \omega \dot{x} = 2 \sin t + C$$

At $t = 0$ $\dot{x} = 1$ so $1 = 2 \sin 0 + C$ $C = 1$ $\dot{x} = 2 \sin t + 1$
 $x = -2 \cot t + t + K$ At $t = 0$ $x = 0 = -2 + K$ so $K = 2$
 $x = -2 \cot t + t + 2$

b) $\ddot{x} = -3 e^{-t}$ $\dot{x} = 3 e^{-t} + C$

At $t = 0$ $v = 0$ so $3 e^{-o} + C = 0$ $C = -3$

At
$$t=0$$
 $V=0$ so $S = -\frac{1}{2}$
 $\dot{x} = 3[e^{-t}-1]$
 $\dot{x} = -2$ when $3(e^{-t}-1) = -2$
 $-t = -\ln 3$ $t = \ln 3$

23 The acceleration of a particle moving in a straight line is given by $\frac{d^2x}{dt^2} = 12\cos 2t$. Initially v = 0 and x = 6. Find its velocity v and displacement x at any time t seconds and sketch the graph of the displacement. How many times does the particle change direction in the first 10 seconds?

$$\dot{x} = 12 \cos 2t \qquad \text{so} \qquad \dot{x} = \underline{12} \sin 2t + C = 6 \sin 2t + C$$
At $t = 0$ $v = 0$ so $C = 0$ $\dot{x} = 6 \sin 2t$

$$x = -\frac{6 \cos 2t}{2} + K = -3 \cos 2t + K$$

at
$$t=0$$
 $x=6$ so $6=-3+K$ $K=9$

$$x = -3 \cos 2t + 9 \quad \text{period } \mathbb{T} \quad \text{Range } [6, 12]$$

$$\frac{10}{11} = 3.2$$
 no 6 times