APPLICATIONS INVOLVING INTEGRALS

1 A cube of ice has an edge length of 10cm. It melts so that its volume decreases at a constant rate and the block
remains a cube. If the edge length measures 5cm after 70 minutes, find:

(@) the rate at which the volume decreases (b) the volume at any time t.
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2 A machine manufactures items at a variable rate given by =

manufactured in a time t minutes.
(@) At what rate is the machine working: (i) initially (i) after 10 minutes?
(b) What is the total number of items manufactured in the first 10 minutes?
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APPLICATIONS INVOLVING INTEGRALS

3 The sluice gates of a dam are operated by an automatic program that controls the flow of water out of the dam.

The program is set so that t hours after 7 am the flow of water will be given by

%— =500 — 15¢" + ' megalitres (ML) per hour.

(@) If no water flows from the dam before 7 am, calculate:

(i) the flow of the water at 9 am
(i) the total volume of water released between 7 am and 9 am

® @ Skezch% =500 - 15F + 1 for 0 < £ < 10.

(i) When does the flow of water stop?

(iii) If the sluice gates close at the moment when % =0, how much water has been released altogether?

4y ﬂ:50b_|5x22+2_5 _ 448 ML/hr
At

. 2 - ks
4y | ot s - [S06-15E + ]
0

5 by

—_—

_s00x2 -5x23+2% _ 964Nt

) It

b) For =10 AV - 8560 - IS x lop + OO = O.
ac

J

& o fr —20t+2t2.0
ae* oo 3t%- 20 t=|0
M- fot pod

500 — 15x10 + 10fio = 382

W) 2o = 1F o Spw

e 10 r

i , _lsmt —5t3+_tfi]

)/ 500~ Ist? + £2 dE -[5 -
0

(o

0

_ 5ox 10 - 5x 10% + 107
A

_ 5000 — 5o + 2,500 = 2,500 HL

—_———

Section 9 - Page 2 of 6
e g



APPLICATIONS INVOLVING INTEGRALS

5 A body starts from O and moves in a straight line. At any time ¢ its velocity is given by x = 6¢ — 4. Indicate
whether each statement below is correct or incorrect.
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6 A body starts from O and moves in a straight line. At any time ¢, its velocity is £ — 4¢". Find, in terms of t:
(@) the displacement x (b) the acceleration. 2— _ tz_‘ [(_ {:3

I_z_{:}_—lf'.t_‘f +C,=_tf_—tq+c

A'{: t=0 / x =0 /20 C':(i.
- £> _ ! and. %:—.Zt[l—-ét]
&

7 ‘The velocity vms™" at time t seconds (t > 0) of a body moving in a straight line is given by v= 61"+ 61 — 12.
Its initial displacement is 7 m from O. Find:

(@) the displacement and acceleration at any time ¢

(b) the acceleration when the velocity is zero (c) the initial velocity and acceleration.
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9 A body is projected vertically upwards with an initial velocity of 30ms™. It rises with a deceleration of 10ms™. Find:
(@) its velocity at any time ¢ (b) its height & m above the point of projection at any time ¢
(c) the greatest height reached (d) the time taken to return to the point of projection.
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14 Two cars A and B travel along a straight road in the same direction. Their respective distances x km from a
fixed point O at any time t hours are given by the following rules:
A x=50t-20r B: x=80f +20t
(@) Calculate each car’s speed at the point O.
(b) At what time are the cars travelling at the same speed?
(c) Both cars reach a point Q at the same time. Calculate the distance from O to Q.
(d) A third car, travelling at uniform speed, is 2km ahead of A and B when they pass the point O. If this car
arrives at Q at the same time as A and B, find a rule connecting x and  for it.
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16 A particle is moving so that, for 0 < t < 1, its velocity is positive and its acceleration is negative. Which graph

could represent the displacement function of this particle?
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21 A particle moves in a straight line so that at time ¢ its displacement from a fixed origin is x and its velocity is v.

(@) Ifits acceleration is 2cost, and v=1and x = 0 when t = 0, find x in terms of 1.
(b) If its acceleration is —=3¢™ and v =0 when t =0, find the time at which v=-2.
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23 The acceleration of a particle moving in a straight line is given by %—z;‘f— = 12cos2t. Initially v= 0 and x = 6. Find

X=2ant+]

its velocity v and displacement x at any time  seconds and sketch the graph of the displacement. How many
times does the particle change direction in the first 10 seconds?
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