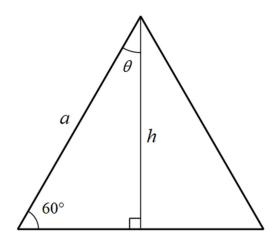

Part A: Exact values of trigonometric ratios for 45°

Consider the isosceles triangle:

a) If the length of both equal sides is a, use Pythagoras theorem to find the length of the hypotenuse x

b) Show that $\theta = 45^{\circ}$.


c) Show that $sin 45 = \frac{1}{\sqrt{2}}$ (which, once rationalised, is equal to $\frac{\sqrt{2}}{2}$)

d) Show that $\cos 45 = \frac{1}{\sqrt{2}}$ (which, once rationalised, is equal to $\frac{\sqrt{2}}{2}$)

e) Show that tan 45 = 1

Part B: Exact values of trigonometric ratios for 30° and 60°

Consider the equilateral triangle:

a) Show that $\theta = 30^{\circ}$

b) If the length of each side is a, use Pythagoras theorem to find the length of the height h

c) Using SOHCAHTOA, show that $sin 30 = \frac{1}{2}$ and that $cos 30 = \frac{\sqrt{3}}{2}$

d) Likewise, show that $sin 60 = \frac{\sqrt{3}}{2}$ and that $cos 60 = \frac{1}{2}$

e) Using results from c) and d) above, find the exact values of *tan* 30 and of *tan* 60