## DERIVATIVE OF $f(x) = e^x$

Exponential functions are of the form  $f(x) = a^x$ , with a a positive constant.

All these functions pass through the point (0,1), as when x = 0,  $f(0) = a^0 = 1$ 

The function  $f(x) = e^x$  is defined as being the exponential function for which the slope of the tangent at the point (0,1) is 1 i.e.:

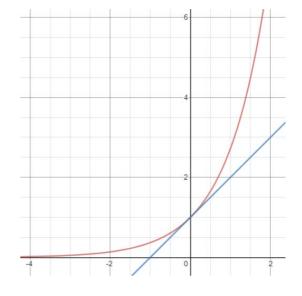
$$\lim_{h \to 0} \left( \frac{e^h - e^0}{h} \right) = 1$$

which can also be noted:

$$\lim_{h \to 0} \left( \frac{e^{h} - 1}{h} \right) = 1$$

The value of the number "e" is approximately 2.71828182845...(it never ends, does not repeat, is <u>irrational</u> (i.e. cannot be written as a fraction) and <u>transcendental</u> (i.e. cannot be a solution of a polynomial equation with rational coefficients).

It was named "e" after mathematician Leonhard Euler who studied it extensively around beginning of 18<sup>th</sup> century.



This function  $f(x) = e^x$  is called "the **natural** exponential function" as of all exponential functions  $f(x) = a^x$ , with a positive constant, it is the only one whose gradient at the point (0,1) is 1.

To find the derivative of  $f(x) = e^x$ , we use the first principle of differentiation:

$$f'(x) = \lim_{h \to 0} \left( \frac{e^{x+h} - e^x}{h} \right) = \lim_{h \to 0} \left( \frac{e^x e^h - e^x}{h} \right) = \lim_{h \to 0} \left( \frac{e^x (e^h - 1)}{h} \right) = \lim_{h \to 0} e^x \left( \frac{e^h - 1}{h} \right)$$

We can replace 1 by  $e^0$  as:  $1 = e^0$ 

$$f'(x) = e^x \times \lim_{h \to 0} \left( \frac{e^h - e^0}{h} \right)$$

But  $\left(\frac{e^h - e^0}{h}\right)$  is the slope of the function  $f(x) = e^x$  at x = 0, which is equal to 1 (by definition of "e") and therefore:  $\lim_{h \to 0} \left(\frac{e^h - e^0}{h}\right) = 1$ 

Therefore:  $f'(x) = e^x \times 1$ 

$$f'(x) = e^x$$

So the derivative of  $f(x) = e^x$  is itself, i.e.  $f'(x) = e^x$ 

This is the only function which is equal to its derivative.

## DERIVATIVE OF $f(x) = e^{kx}$ where k is a constant

$$f(x) = e^{kx} = g[h(x)]$$

We deal with this derivative as it is a composition of functions.

$$g(X) = e^X h(x) = kx$$

$$g'(X) = e^X h'(x) = k$$

Therefore, using the chain rule:

$$f'(x) = g'[h(x)] \times h'(x)$$

$$f'(x) = e^{kx} \times k$$

$$f'(x) = k e^{kx}$$

**Example**: if 
$$f(x) = e^{-3x}$$
 then  $f'(x) = -3 e^{-3x}$