PROJECTIONS OF VECTORS

Any vector can be resolved into a sum of two vectors that are perpendicular to each other. It is usual to resolve the vector into two perpendicular components with one in a specified direction (e.g. parallel to a given vector) and the other perpendicular to that specified direction.

Scalar direction

Example 21

Consider the vectors $\underline{a} = 5\underline{i} - \underline{j}$ and $\underline{b} = 3\underline{i} + 4\underline{j}$. (a) Find the scalar projection of \underline{a} onto \underline{b} .

(a) Find
$$\hat{\underline{b}} = \frac{\underline{b}}{|\underline{b}|}$$
 by first finding $|\underline{b}|$.
 $\underline{b} = 3\underline{i} + 4\underline{j}$
 $|\underline{b}| = \sqrt{3^2 + 4^2}$
 $= 5$
 $\hat{\underline{b}} = \frac{\underline{b}}{|\underline{b}|} = \frac{1}{5} (3\underline{i} + 4\underline{j})$
Scalar projection $\underline{a} \bullet \hat{\underline{b}}$:

$$\hat{a} \bullet \hat{b} = (5\underline{i} - \underline{j}) \bullet \frac{1}{5} (3\underline{i} + 4\underline{j})$$
$$= \frac{15 - 4}{5}$$
$$= \frac{11}{5}$$

The scalar projection of \underline{a} onto \underline{b} is $\frac{11}{5}$.

(b) Find the scalar projection of \underline{b} onto \underline{a} .

(b) Find
$$\hat{a} = \frac{a}{|a|}$$
 by first finding $|a|$.
 $a = 5i - j$: $|a| = \sqrt{5^2 + (-1)^2}$
 $= \sqrt{26}$
 $\hat{a} = \frac{a}{|a|} = \frac{1}{\sqrt{26}} (5i - j)$
Scalar projection $b \cdot \hat{a}$:
 $b \cdot \hat{a} = (3i + 4j) \cdot \frac{1}{\sqrt{26}} (5i - j)$
 $= \frac{15}{\sqrt{26}} - \frac{4}{\sqrt{26}}$
 $= \frac{11}{\sqrt{26}}$
 $= \frac{11\sqrt{26}}{26}$

The scalar projection of \underline{b} onto \underline{a} is $\frac{11\sqrt{26}}{26}$

PROJECTIONS OF VECTORS

In general, the scalar projection of \underline{a} onto \underline{b} does *not* equal the scalar projection of \underline{b} onto \underline{a} .

Vector projection

In each of the diagrams above, vector \underline{c} is the **vector projection** of vector \underline{a} onto \underline{b} . The vector projection of \underline{a} onto \underline{b} is a fraction of \underline{b} , for example, $\frac{m}{n}\underline{b}$ where *m* and *n* are real numbers.

Now, $\underline{c} = |\underline{c}| \hat{\underline{b}}$

$$= (a \bullet b)b$$

The vector projection of \underline{a} perpendicular to \underline{b} is: $\underline{a} - \underline{c}$

$$= \underline{a} - (\underline{a} \cdot \underline{b}) \underline{b}$$

The vector projection of \underline{a} onto \underline{b} is $(\underline{a} \cdot \underline{\hat{b}}) \underline{\hat{b}}$.

The vector projection of \underline{a} onto \underline{b} can also be expressed as $\frac{\underline{a} \cdot \underline{b}}{\underline{b} \cdot \underline{b}} \underline{b}$. The vector projection of \underline{a} perpendicular to \underline{b} is $\underline{a} - (\underline{a} \cdot \underline{b}) \underline{b}$. The vector projection of \underline{a} perpendicular to \underline{b} can also be expressed as $\underline{a} - \frac{\underline{a} \cdot \underline{b}}{\underline{b} \cdot \underline{b}} \underline{b}$.

Consider the vectors $\underline{a} = 2\underline{i} - 5\underline{j}$ and $\underline{b} = -2\underline{i} + 3\underline{j}$.

(a) Find the vector projection of \underline{a} onto \underline{b} .

Solution

a) Find
$$\hat{\underline{b}} = \frac{\underline{b}}{|\underline{b}|}$$
 by first finding $|\underline{b}|$.
 $\underline{b} = -2\underline{i} + 3\underline{j}$: $|\underline{b}| = \sqrt{(-2)^2 + 3^2}$
 $= \sqrt{13}$
 $\hat{\underline{b}} = \frac{\underline{b}}{|\underline{b}|} = \frac{1}{\sqrt{13}} (-2\underline{i} + 3\underline{j})$
Scalar projection: $\underline{a} \cdot \underline{b}$:
 $\underline{a} \cdot \underline{b} = (2\underline{i} - 5\underline{j}) \cdot \frac{1}{\sqrt{13}} (-2\underline{i} + 3\underline{j})$
 $= \frac{-4}{\sqrt{13}} + \frac{-15}{\sqrt{13}}$
 $= \frac{-19}{\sqrt{13}}$

(b) Find the vector projection of \underline{a} perpendicular to \underline{b} .

(b) Find
$$\underline{a} - (\underline{a} \cdot \underline{b}) \underline{b}$$
:
 $\underline{a} - (\underline{a} \cdot \underline{b}) \underline{b} = 2\underline{i} - 5\underline{j} - \frac{-19}{13} (-2\underline{i} + 3\underline{j})$
 $= 2\underline{i} - 5\underline{j} - \frac{38}{13}\underline{i} + \frac{57}{13}\underline{j}$
 $= -\frac{12}{13}\underline{i} - \frac{8}{13}\underline{j}$
 $= -\frac{4}{13} (3\underline{i} + 2\underline{j})$

The vector projection of $\underline{a} = 2\underline{i} - 5\underline{j}$ perpendicular to $\underline{b} = -2\underline{i} + 3\underline{j}$ is $-\frac{4}{13}(3\underline{i} + 2\underline{j})$.

Vector projection: $(\underline{a} \cdot \underline{\hat{b}}) \underline{\hat{b}}$:

$$\begin{aligned} (\underline{a} \bullet \underline{b}) \underline{b} &= \frac{-19}{\sqrt{13}} \times \frac{1}{\sqrt{13}} \left(-2\underline{i} + 3\underline{j} \right) \\ &= \frac{-19}{13} \left(-2\underline{i} + 3\underline{j} \right) \end{aligned}$$

The vector projection of $\underline{a} = 2\underline{i} - 5\underline{j}$ onto $\underline{b} = -2\underline{i} + 3\underline{j}$ is $\frac{-19}{13}(-2\underline{i} + 3\underline{j})$.

