SIMULTANEOUS LINEAR INEQUALITIES

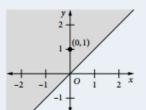
Two linear equations may intersect at a point. The intersection of two linear inequalities is the region common to the two inequalities. This is the region where both inequalities hold simultaneously.

Example 9

- (a) Sketch the region given by $y \ge x$. (b) Sketch the region given by x + y < 2.
- (c) Sketch the region common to $y \ge x$ and x + y < 2.

Solution

(a) $y \ge x$

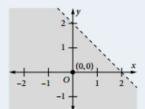

Test the point (0, 1)

Test: LHS ≥ RHS using (0,1)

y > -x, sub in y = 1 and x = 0

1 > = 0, which is true.

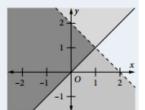
Shade region above line


(b) x + y < 2

Test the point (0,0)

Test LHS < RHS using the point (0,0)

x + y < 2, where x = 0 and y = 00 + 0 < 2, which is true.


Shade region below dashed line

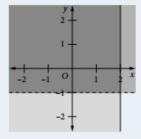
(c) $y \ge x$ and x + y < 2

Identify common region

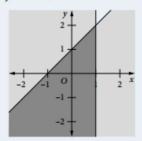
Shade clearly, using a darker shading for the common region

Example 10

Sketch the region defined by each pair of inequalities. Describe the region in words.


(a)
$$x \le 2, y > -1$$

(b)
$$y \le x + 1, x \le 1$$


Solution

Draw each boundary and shade the two regions, then shade the common region differently.

(a)
$$x \le 2, y > -1$$

(b) $y \le x + 1, x \le 1$

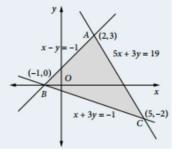
The region on and to the left of the line x = 2 that is also above the line y = -1.

The region on and below the line y = x + 1 that is also on and to the left of the line x = 1.

If the shading of different regions becomes difficult to show, you should just lightly shade the original regions before darkening the final answer, as in part (b).

SIMULTANEOUS LINEAR INEQUALITIES

Example 11


Sketch the region defined by the three inequalities $x - y \ge -1$, $x + 3y \ge -1$, $5x + 3y \le 19$. Show the points of intersection of the lines. Describe the region in words.

Solution

To find the points of intersection of the lines, solve pairs of equations simultaneously:

- The lines x y = -1 and 5x + 3y = 19 intersect at A(2,3)
- The lines x y = -1 and x + 3y = -1 intersect at B(-1, 0)
- The lines 5x + 3y = 19 and x + 3y = -1 intersect at C(5, -2)

The shaded region is the interior of the triangle bounded by the lines x - y = -1, x + 3y = -1 and 5x + 3y = 19. The vertices of the region are the intersection points A, B and C.

