1 Differentiate:

(a) $\sin x + \tan 2x$

- **(b)** $3\cos 4x 5\sin 2x$
- (c) $x \cos x$

(d) $\frac{\cos x}{\sin x}$

(e) $2e^{-x}\cos 3x$

(f) $\log_e(\sin 2x)$

2 Differentiate with respect to *x*:

(a)
$$(x^2 + 2x)e^x$$

(b)
$$2e^{-x} \ln x$$

(c)
$$\log_e (1 + e^x)$$

(d)
$$\log_e(x^2 + 2x)$$

(e)
$$(x^2 + 3x)e^{-3x}$$

(f)
$$e^{\sqrt{x}} + \log_e \sqrt{x}$$

- 3 The position x of a particle moving along a straight line at any time t is given by $x = 3 + 6\cos\frac{\pi t}{6}$.
 - (a) Find the position of the particle for values of t = 0, 2, 4, 6, 8, 10, 12.
 - **(b)** Find the velocity and acceleration of the particle when it first reaches the position x = 0.

6 Differentiate:

(a)
$$\log_e(x \tan x)$$

(b)
$$\log_e \left(\frac{x^3 - 6}{e^{-x} - 1} \right)$$

(b)
$$\log_e \left(\frac{x^3 - 6}{e^{-x} - 1} \right)$$
 (c) $\log_e = \left(\frac{\sqrt{x} \cos x}{1 - \sin^2 x} \right)$

7 Differentiate:

(a)
$$x^3 10^x$$

(b)
$$\sin x + \log_a x$$

(c)
$$2^x + 3^x + 4^x$$

(d)
$$\frac{a^x}{\log_a x}$$