1 Complete these product tables.

| b | ×  | -4 | -2 | 0 | 2 | 4 |
|---|----|----|----|---|---|---|
|   | -4 | 16 |    |   |   |   |
|   | -2 |    |    |   |   |   |
|   | 0  |    |    |   |   | 0 |
|   | 2  |    |    |   |   |   |
|   | 4  |    |    |   | 8 |   |

**2** Write down the missing number.

**a** 
$$2 \times (-3) = -6$$
, so  $-6 \div (-3) =$ 

**b** 
$$2 \times (-3) = -6$$
, so  $-6 \div 2 = \boxed{\phantom{0}}$ 

**c** 
$$-16 \div 4 = -4$$
, so  $\times 4 = -16$ 

**d** 
$$16 \div (-4) = -4$$
, so  $\times (-4) = 16$ 

**3** Complete each sentence by inserting the missing word *positive* or *negative*.

- a The product (×) of two positive numbers is \_\_\_\_\_.
- **b** The product (×) of two negative numbers is \_\_\_\_\_
- **c** The product (×) of two numbers with opposite signs is \_\_\_\_\_
- **d** The quotient (÷) of two positive numbers is \_\_\_\_\_\_.
- e The quotient (÷) of two negative numbers is \_\_\_\_\_
- f The quotient (÷) of two numbers with opposite signs is \_\_\_\_\_

4 Calculate the answer to these products.

a 
$$3 \times (-5)$$

**b** 
$$1 \times (-10)$$

$$\mathbf{c} = -3 \times 2$$

$$d -9 \times 6$$

**e** 
$$-8 \times (-4)$$

**f** 
$$-2 \times (-14)$$

g 
$$-12 \times (-12)$$

$$h -11 \times 9$$

$$-13 \times 3$$

$$7 \times (-12)$$

$$\mathbf{k} = -19 \times (-2)$$

$$-36 \times 3$$

$$\mathbf{m} -6 \times (-11)$$

$$\mathbf{n}$$
 5 × (-9)

$$0 -21 \times (-3)$$

**p** 
$$-36 \times (-2)$$

**5** Calculate the answer to these quotients.

**a** 
$$14 \div (-7)$$

**b** 
$$36 \div (-3)$$

**c** 
$$-40 \div 20$$

d 
$$-100 \div 25$$

**e** 
$$-9 \div (-3)$$

f 
$$-19 \div (-19)$$

**g** 
$$-25 \div 5$$

**h** 
$$38 \div (-2)$$

i 
$$84 \div (-12)$$
 j  $-108 \div 9$  k  $-136 \div 2$ 

m 
$$-132 \div (-11)$$
 n  $-39 \div (-3)$  0  $78 \div (-6)$ 

$$k -136 \div 2$$

l 
$$-1000 \div (-125)$$
  
p  $-156 \div (-12)$ 

Work from left to right to find the answer. Check your answer using a calculator.

**a** 
$$2 \times (-3) \times (-4)$$

**b** 
$$-1 \times 5 \times (-3)$$

$$c$$
  $-10 \div 5 \times 2$ 

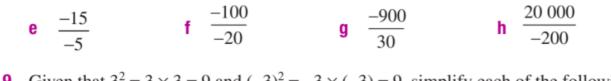
**d** 
$$-15 \div (-3) \times 1$$

e 
$$-2 \times 7 \div (-14)$$

**e** 
$$-2 \times 7 \div (-14)$$
 **f**  $100 \div (-20) \times 2$ 

**g** 
$$48 \div (-2) \times (-3)$$

**h** 
$$-36 \times 2 \div (-4)$$
 **i**  $-125 \div 25 \div (-5)$ 


$$i -125 \div 25 \div (-5)$$

$$-8 \div (-8) \div (-1)$$

**k** 
$$46 \div (-2) \times (-3) \times (-1)$$
 **l**  $-108 \div (-12) \div (-3)$ 

$$-108 \div (-12) \div (-3)$$

| 7 | Wı | rite down the missing nur                | mbe  | r in these calculations.     |      |                        |
|---|----|------------------------------------------|------|------------------------------|------|------------------------|
|   | a  | $5 \times \square = -35$                 | b    | $\times (-2) = -8$           | C    | $16 \div \Box = -4$    |
|   | d  | $-32 \div \Box = -4$                     | е    | $\div (-3) = -9$             | f    |                        |
|   | g  | $-5000 \times \square = -10000$          | h    | $-87 \times \square = 261$   | i    | 243 ÷ = -81            |
|   | j  | $50 \div \Box = -50$                     | k    | $-92 \times \square = 184$   | ľ    | $-800 \div \Box = -20$ |
| 8 | Re | member that $\frac{9}{3}$ means 9        | ÷ 3. | Use this knowledge to simple | lify | each of the following. |
|   |    | $\frac{-12}{4}$ <b>b</b> $\frac{21}{-7}$ |      |                              |      | d $\frac{-124}{-4}$    |



9 Given that 
$$3^2 = 3 \times 3 = 9$$
 and  $(-3)^2 = -3 \times (-3) = 9$ , simplify each of the following.  
**a**  $(-2)^2$  **b**  $(-1)^2$  **c**  $(-9)^2$  **d**  $(-10)^2$   
**e**  $(-6)^2$  **f**  $(-8)^2$  **g**  $(-3)^2$  **h**  $(-1.5)^2$ 

**e** 
$$(-6)^2$$
 **f**  $(-8)^2$  **g**  $(-3)^2$  **h**  $(-1.5)^2$ 

10 List the different pairs of integers that multiply to give these numbers.

**b** 16

**a** 6

11 Insert a multiplication or division sign between the numbers to make a true statement.

**b** 
$$-25 \square -5 \square 3 = 15$$

**c** 
$$-36 2 -3 = 216$$

**d** 
$$-19 \square -19 \square 15 = 15$$

12 a There are two distinct pairs of numbers whose product is -8 and difference is 6. What are the two numbers?

**b** The quotient of two numbers is -11 and their difference is 36. What are the two numbers? There are two distinct pairs to find.

**13** Given that  $2^4$  means  $2 \times 2 \times 2 \times 2$  and  $(-2)^4 = -2 \times -2 \times -2 \times -2$ 

a Calculate:

$$(-2)^3$$

$$(-2)^6$$

$$(-3)^3$$

$$(-3)^4$$

**b** Which questions from part **a** give positive answers and why?

**c** Which questions from part **a** give negative answers and why?

14  $a \times b$  is equivalent to ab, and  $2 \times (-3)$  is equivalent to  $-(2 \times 3)$ . Use this information to simplify these expressions.

**a** 
$$a \times (-b)$$

**b** 
$$-a \times b$$

$$\mathbf{c} -a \times (-b)$$