1 Differentiate:

(a)
$$e^{x^2} + 2$$

(b)
$$(e^x + x^2)^4$$

(e) $e^{\sqrt{x}+1}$

(c)
$$e^x + ex$$

(d)
$$4e^{\cos x}$$

(e)
$$e^{\sqrt{x}+1}$$

(f)
$$e^{x+\ln x}$$

- 2 Differentiate:
 - (a) $x e^{\sin x}$
- **(b)** $e^x \log_e x$
- (c) $e^{\cos{(2x+1)}}$
- (d) $1 + x + x^2 e^x$

3 Given
$$y = \frac{100}{1 + 15e^{-0.5t}}$$
, find $\frac{dy}{dt}$.

5 In statistics, the normal probability density function is given by $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. Find f'(0).

- **4** (a) Sketch the graphs of $f(x) = e^{\sin x}$ and $g(x) = e^{\cos x}$ on the same diagram for $0 \le x \le 2\pi$, using appropriate technology.
 - **(b)** Write the coordinates of their points of intersection (correct to 3 decimal places where necessary). Check your solutions algebraically.
 - (c) Find the gradient of the tangent to each curve at their points of intersection.
 - (d) Do the curves intersect at right angles at these points? Justify your answer.