INTEGRALS INVOLVING TRIGONOMETRIC SUBSTITUTION

If an expression of the form a^2-x^2 occurs in the integrand, the standard trigonometric substitutions $x=a\sin\theta$ or $x=a\cos\theta$ will help to find the integral.

If an expression of the form $a^2 + x^2$ occurs in the integrand, then the standard substitution is $x = a \tan \theta$.

IMPORTANT NOTE: in this course, if these substitutions are needed, they should be given in the question.

Example 18

Evaluate $\int_0^2 \sqrt{4-x^2} \, dx$ using the substitution $x = 2\sin\theta$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

Solution

$$x = 2\sin\theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}; \frac{dx}{d\theta} = 2\cos\theta$$

$$\sqrt{4-x^2} = \sqrt{4-4\sin^2\theta} = \sqrt{4\cos^2\theta} = \left|2\cos\theta\right| = 2\cos\theta \qquad \text{because } -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \quad \therefore \cos\theta \ge 0$$

Limit for
$$x = 2$$
: $2 = 2 \sin \theta$, $\sin \theta = 1$, $\theta = \frac{\pi}{2}$

Limit for
$$x = 2$$
: $2 = 2 \sin \theta$, $\sin \theta = 1$, $\theta = \frac{\pi}{2}$
Limit for $x = 0$: $0 = 2 \sin \theta$, $\sin \theta = 0$, $\theta = 0$

$$\int_0^2 \sqrt{4 - x^2} \, dx = \int_0^{\frac{\pi}{2}} 2 \cos \theta \times \frac{dx}{d\theta} \times d\theta$$

$$= \int_0^{\frac{\pi}{2}} 2\cos\theta \times 2\cos\theta d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} 2\cos^2\theta d\theta$$

$$= 2 \int_0^{\frac{\pi}{2}} (1 + \cos 2\theta) d\theta$$

$$= 2 \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\frac{\pi}{2}}$$

$$= 2 \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi - \left(0 + \frac{1}{2} \sin 0 \right) \right]$$

$$= 2 \times \frac{\pi}{2} = \pi$$

Geometrically, the graph of $y = \sqrt{4 - x^2}$ between x = 0 and x = 2 is the quarter of a circle with equation $x^2 + y^2 = 4$ (in the first quadrant). This integration thus proves the formula for the area of a circle: $A = \pi r^2$.

Area = $\frac{1}{4}\pi r^2 = \frac{1}{4} \times \pi \times 4 = \pi$ when r = 2.

Note: If the restriction on θ had been different, e.g. $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, then $\cos \theta \ge 0$ would not be true and you would not be able to use $\sqrt{4-x^2} = \sqrt{4\cos^2 \theta} = 2\cos \theta$. Instead, you may have needed $\sqrt{4-x^2} = \sqrt{4\cos^2 \theta} = -2\cos \theta$.

Remember: Always take care with trigonometric substitutions and check the sign of the function for the given domain.

INTEGRALS INVOLVING TRIGONOMETRIC SUBSTITUTION

Example 19

Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using the substitution $x = \tan \theta$.

Solution

Method 1

Limit for
$$x = 1$$
: $1 = \tan \theta$, $\frac{dx}{d\theta} = \sec^2 \theta$: $\frac{1}{1+x^2} = \frac{1}{1+\tan^2 \theta} = \frac{1}{\sec^2 \theta}$
Limit for $x = 1$: $1 = \tan \theta$, $\theta = \frac{\pi}{4}$
Limit for $x = 0$: $0 = \tan \theta$, $\theta = 0$

$$\int_0^1 \frac{1}{1+x^2} dx = \int_0^{\frac{\pi}{4}} \frac{1}{\sec^2 \theta} \times \frac{dx}{d\theta} \times d\theta$$

$$= \int_0^{\frac{\pi}{4}} \frac{1}{\sec^2 \theta} \times \sec^2 \theta d\theta$$

$$= \int_0^{\frac{\pi}{4}} d\theta$$

$$= \left[\theta\right]_0^{\frac{\pi}{4}} = \frac{\pi}{4}$$

Method 2

$$x = \tan \theta, dx = \sec^2 \theta d\theta$$
Limit for $x = 1$: $1 = \tan \theta, \theta = \frac{\pi}{4}$
Limit for $x = 0$: $0 = \tan \theta, \theta = 0$

$$\int_0^1 \frac{1}{1+x^2} dx = \int_0^{\frac{\pi}{4}} \frac{1}{1+\tan^2 \theta} \sec^2 \theta d\theta$$

$$= \int_0^{\frac{\pi}{4}} \frac{1}{\sec^2 \theta} \times \sec^2 \theta d\theta$$

$$= \int_0^{\frac{\pi}{4}} d\theta$$

$$= [\theta]_0^{\frac{\pi}{4}} = \frac{\pi}{4}$$

Example 20

Find $\int \frac{1-\sin x}{x+\cos x} dx$ using the substitution $u = x + \cos x$.

Solution

$$u = x + \cos x, du = (1 - \sin x) dx: \quad \int \frac{1 - \sin x}{x + \cos x} dx = \int \frac{du}{u}$$
$$= \ln |u| + C$$
$$= \ln |x + \cos x| + C$$

This example involves an indefinite integral, so you must remember to resubstitute for u at the end to make the answer a function of x.