1 If $u_{n+1} = 3u_n + 4$ and $u_1 = 1$, use mathematical induction to prove that $u_n = 3^n - 2$ for all positive integers n. 4 A sequence is defined recursively as $u_1 = 5$, $u_2 = 13$, $u_n = 5u_{n-1} - 6u_{n-2}$ for $n \ge 3$. By induction, prove that $u_n = 2^n + 3^n$ for all positive integers n. **7** The Fibonacci sequence is defined as $u_1 = 1$, $u_2 = 1$, $u_{n+2} = u_{n+1} + u_n$ for all positive integers $n \ge 1$. Prove by induction that $u_n < \left(\frac{5}{3}\right)^n$ for all positive integers n. **8** If $a_0 = 1$, $a_1 = 6$ and $a_n = 6a_{n-1} - 9a_{n-2}$, use mathematical induction to prove that $a_n = 3^n + n3^n$. - **9** (a) Prove by contradiction that $(4k+3)\sqrt{k} \le (4k+1)\sqrt{k+1}$ for all $k \ge 0$. - **(b)** Prove by induction that $\sqrt{1} + \sqrt{2} + \sqrt{3} + ... + \sqrt{n} \le \frac{(4n+3)\sqrt{n}}{6}$ for all integers $n \ge 1$. **10** If $4 = \frac{3}{u_1} = u_1 + \frac{3}{u_2} = u_2 + \frac{3}{u_3} = u_3 + \frac{3}{u_4} = \dots$, prove by induction that $u_n = \frac{3^{n+1} - 3}{3^{n+1} - 1}$ for all positive integers n.