PARTS OF A CIRCLE

CIRCUMFERENCE OF A CIRCLE

- Diameter (D): the distance across the centre of a circle
- Radius (R): half of diameter
- Circumference (C): distance around the circle

For any circle, the ratio: $\frac{Circumference}{Diameter} = 3.141 5926535...$

This number is noted π (say "pi")

 $\mathbf{C} = \boldsymbol{\pi} \mathbf{D}$ (also equal to $2 \pi R$)

the number π

- The decimal places forming π continue forever and do not form a repeated pattern
- π cannot be expressed as a fraction or ratio; so it's called an irrational number.
- has been known by many civilisations including Egyptian, Greek, Indian and Chinese
- is often approximated as 3.14 or 22/7
- Locate π on your calculator.

EXAMPLES OF CALCULATION OF CIRCUMFERENCE

Find the circumference of these circles correct to 2 decimal places. Use a calculator for the value of pi.

a

b

SOLUTION

a
$$C = 2\pi r$$

$$= 2 \times \pi \times 3.5$$

 $=7\pi$

= 21.99 m (to 2 decimal places)

EXPLANATION

Since *r* is given, you can use $C = 2\pi r$.

Alternatively use $C = \pi d$ with d = 7.

b
$$C = \pi d$$

$$=\pi\times4$$

 $=4\pi$

= 12.57 cm (to 2 decimal places)

Substitute d = 4 into the rule $C = \pi d$ or use $C = 2\pi r$ with r = 2.