INTERSECTION OF TWO LINES

$$0 + 2 = 3x - 9 = 0$$
 $x = 3$

$$\alpha = 3$$

$$3 + 2y - 3 = 0$$
 so $y = 0$

so
$$y = 0$$

2 Find the equation of the line that contains the intersection point of the lines 2x + 5y - 19 = 0 and 3x - 4y + 6 = 0 and is parallel to the line with equation 4x - y - 8 = 0.

$$3x-4y+6=0$$
 and is parallel to the line with equation $4x-y-8=0$.
 $3\times (1) - 2\times (2) \implies |5y-57+8y-12=0| \implies 23\cdot y=69$ $y=3$
and $2x+5\times 3-19=0 \implies 2x=4$ $x=2$ so point $(2,3)$

$$4x - y - 8 = 0$$
 \Rightarrow $y = 4x - 8$ $m = 4$
 $y - 3 = 4(x - 2)$ \Rightarrow $y = 4x - 5$

- 5 Find the equation of the straight line that contains the intersection point of the lines 3x + 2y 12 = 0 and 5x - y - 7 = 0 and that:
 - (a) passes through the point (-4, -5)
- (b) is parallel to the line 2x y + 4 = 0
- (c) is perpendicular to the line y = 5.

$$1 + 2 \times 2 = 3 \quad |3x - |2 - |4 = 0 = 3 \quad x = 2$$

and from there: $3 \times 2 + 2 y - |2 = 0 = 3 \quad y = \frac{1}{2} \times (+6) = 3$

so the point of intersection is (2,3)

a)
$$M = \frac{-5-3}{-4-2} = \frac{-8}{-6} = \frac{4}{3}$$
 $y - 3 = \frac{4}{3}(x-2)$
 $y - 3 = \frac{4}{3}(x-2)$

$$y-3=\frac{4}{3}(x-2)$$

 $y=\frac{4}{3}x+\frac{1}{3}$

$$y = 2x + 4 \qquad m = 2$$

$$y-3=2(x-2)^3$$
 $y=2x-1$

$$y = 2$$

INTERSECTION OF TWO LINES

D(x0,40)

7 ABCD is a quadrilateral. The coordinates of A, B and C are (-8,6), (2,4) and (5,-7) respectively. If the diagonals are perpendicular and DC is parallel to the x-axis, find:

(b) the coordinates of the intersection point of the diagonals.

Mac =
$$\frac{-7-6}{5+8} = \frac{-13}{13} = -1$$

Mad = $\frac{y_b-4}{x_b-2} = 1$

Mad

the lines intersect at 2y=0 i.e. y=0so at (-2,0)

9 Without actually solving the simultaneous equations, state whether the following pairs of lines intersect, are parallel or coincide.

(a)
$$2x - 3y - 8 = 0$$

 $4x - 6y - 16 = 0$

$$2x - 3y - 8 = 0$$
 (b) $x + 3y + 7 = 0$ (c) $6x - 5y - 24 = 0$ (d) $x + y - 7 = 0$ $4x - 6y - 16 = 0$ $2x + 7y + 16 = 0$ $9x - 4y - 22 = 0$ $x + y - 8 = 0$

(c)
$$6x - 5y - 24 = 0$$

 $9x - 4y - 22 = 0$

(d)
$$x+y-7=0$$

 $x+y-8=0$

a) Eq@ is the same as (1), divided by 2. So coincide

b)
$$M_{\odot} = -\frac{1}{3}$$
 $M_{\odot} = -\frac{2}{7}$ so intersect

$$M_{\odot} = -\frac{2}{7}$$

c)
$$M_0 = 6/5$$
 $M_0 = 9/4$ so intersect

$$m_2 = 9/4$$

d)
$$M_{\mathbb{O}} = -1$$
 $M_{\mathbb{O}} = -1$ so parallel.