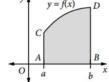
AREA BOUNDED BY THE Y-AXIS

The techniques used so far can also be used to find areas where one of the boundaries is the y-axis. You can effectively swap the roles of the x and y variables. y_{A}

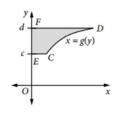
The area bounded by the curve y = f(x), the *x*-axis and the ordinates at x = a and x = b is given by:

Area =
$$\int_{a}^{b} f(x)dx$$
 or Area = $\int_{a}^{b} y dx$



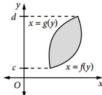
Similarly, the area bounded by the curve x = g(y), the *y*-axis and the abscissae (i.e. horizontal lines) at y = c and y = d is given by:

Area =
$$\int_{c}^{d} g(y) dy$$
 or Area = $\int_{c}^{d} x dy$



For two curves x = f(y) and x = g(y) that intersect at y = c and y = d, where $f(y) \ge g(y)$ over the interval $c \le y \le d$, the area bounded by the curves is given by:

Area =
$$\int_{c}^{d} (f(y) - g(y)) dy$$

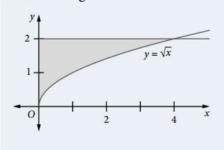


Example 18

Calculate the area of the region bounded by the curve $y = \sqrt{x}$, the y-axis and the line y = 2.

Solution

Sketch the region:



Write the equation as a function of *y* (i.e. make *x* the subject):

$$y = \sqrt{x} \rightarrow \sqrt{x} = y$$

$$x = y^{2}$$

$$Area = \int_{0}^{2} x \, dy = \int_{0}^{2} y^{2} \, dy$$

$$= \left[\frac{y^{3}}{3}\right]_{0}^{2}$$

$$= \frac{8}{3} - 0$$

$$= 2\frac{2}{3}$$

Area of the region is $2\frac{2}{3}$ units².

AREA BOUNDED BY THE Y-AXIS

Example 19

Calculate the area of the region bounded by the curve $y = \sqrt{x}$, the line y = 6 - x and the y-axis.

Solution

Find the point of intersection:

Square both sides:

$$\sqrt{x} = 6 - x$$

$$(\sqrt{x})^2 = (6-x)^2$$

$$x = 36 - 12x + x^2$$

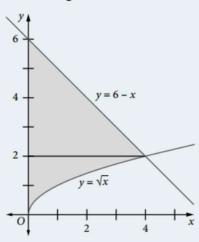
$$x^2 - 13x + 36 = 0$$

$$(x-4)(x-9)=0$$

$$x = 4, 9$$

Only x = 4 is a root of $\sqrt{x} = 6 - x$: intersection point is (4, 2).

Sketch the region:



Write the equations as functions of *y*:

$$y = \sqrt{x} \rightarrow y^2 = x$$

$$y = 6 - x \rightarrow x = 6 - y$$

Area =
$$\int_0^2 y^2 dy + \int_2^6 (6 - y) dy$$

$$= \left[\frac{y^3}{3}\right]_0^2 + \left[6y - \frac{y^2}{2}\right]_0^6$$

$$= \left(\frac{8}{3} - 0\right) + \left(36 - 18\right) - \left(12 - 2\right)$$

$$=10\frac{2}{3}$$

Area of the region is $10\frac{2}{3}$ units².