The result
$$\frac{dy}{dx} \times \frac{dx}{dy} = 1$$

Proof

Let y = f(x). Differentiate both sides with respect to y:

$$\frac{d}{dy}(y) = \frac{d}{dy}(f(x))$$

$$\therefore 1 = \frac{d}{dx} (f(x)) \times \frac{dx}{dy}$$

(using chain rule on RHS)

$$\therefore 1 = \frac{dy}{dx} \times \frac{dx}{dy}$$

Hence
$$\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)}$$

Demonstration

$$Let y = x^3 - 1$$

Let
$$y = x^3 - 1$$
 : $x = (y+1)^{\frac{1}{3}}$

$$\frac{dy}{dx} = 3x$$

$$\frac{dy}{dx} = 3x^2 \qquad \frac{dx}{dy} = \frac{1}{3}(y+1)^{-\frac{2}{3}}$$

$$\frac{dy}{dx} \times \frac{dx}{dy} = 3x^2 \times \frac{1}{3}(y+1)^{-\frac{2}{3}}$$

$$=\frac{x^2}{(y+1)^{\frac{2}{3}}}$$

$$= \frac{x^2}{(x^3)^{\frac{2}{3}}}$$

$$=\frac{x^2}{x^2}=1$$

Derivative of sin⁻¹x

 $\sin^{-1} x$ is defined for $-1 \le x \le 1$.

Let
$$y = \sin^{-1} x$$
 \therefore $x = \sin y$ where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$$\frac{dx}{dy} = \cos y$$

$$\therefore \frac{dy}{dx} = \frac{1}{\cos y} \text{ noting that } \cos y \neq 0 \therefore -\frac{\pi}{2} < y < \frac{\pi}{2}$$

Now, using
$$\cos^2 y + \sin^2 y = 1$$
: $\frac{dy}{dx} = \frac{1}{\pm \sqrt{1 - \sin^2 y}}$ Which one?

As y is an angle in the first or fourth quadrants, cos y must be positive.

$$\therefore \frac{dy}{dx} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}} \quad \text{for } -1 < x < 1$$

Note that the derivative is not defined at $x = \pm 1$ (the graph of $\sin^{-1} x$ has vertical tangents at its endpoints).

Also note that the derivative is positive for all x in its domain (as sin⁻¹ x is an increasing function).

$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, -1 < x < 1$$

Derivative of $\sin^{-1}\frac{x}{2}$

 $\sin^{-1}\frac{x}{a}$ is defined for $-a \le x \le a$.

Let
$$y = \sin^{-1}\frac{x}{a}$$
 : $x = a\sin y, -\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$\frac{dx}{dy} = a\cos y$$

$$\therefore \frac{dy}{dx} = \frac{1}{a\cos y} \qquad \text{for } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

i.e.
$$\frac{dy}{dx} = \frac{1}{\sqrt{a^2 - x^2}}$$
 for $-a < x < a$

$$\frac{d}{dx}\left(\sin^{-1}\frac{x}{a}\right) = \frac{1}{\sqrt{a^2 - x^2}}, -a < x < a$$

Derivative of cos-1x

 $\cos^{-1} x$ is defined for $-1 \le x \le 1$.

Let
$$y = \cos^{-1} x$$
 \therefore $x = \cos y, 0 \le y \le \pi$

$$\frac{dx}{dy} = -\sin y$$

$$\therefore \frac{dy}{dx} = -\frac{1}{\sin y} \quad \text{for } 0 < y < \pi$$
i.e. $\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}} \quad \text{for } -1 < x < 1$

As for the derivative of $\sin^{-1} x$, the last step again uses $\cos^2 y + \sin^2 y = 1$.

Note that the gradient is negative for all x in the domain.

Note also that the domain of the derived function is different to the domain of cos-1 x. Why?

Derivative of $\cos^{-1} \frac{x}{a}$

 $\cos^{-1} \frac{x}{a}$ is defined for $-a \le x \le a$.

Let
$$y = \cos^{-1} \frac{x}{a}$$
 $\therefore x = a \cos y, 0 \le y \le \pi$

$$\frac{dx}{dy} = -a \sin y$$

$$\therefore \frac{dy}{dx} = -\frac{1}{a \sin y} \quad \text{for } 0 < y < \pi$$
i.e. $\frac{dy}{dx} = -\frac{1}{\sqrt{a^2 - x^2}} \quad \text{for } -a < x < a$

$$\frac{d}{dx}\left(\cos^{-1}\frac{x}{a}\right) = -\frac{1}{\sqrt{a^2 - x^2}}, -a < x < a$$

Example 21

Find the derivative of $\cos^{-1}(2x+1)$, stating the values of x for which it is defined.

Solution

 $\cos^{-1}(2x+1)$ is defined for $-1 \le 2x+1 \le 1$

i.e. for
$$-2 \le 2x \le 0$$

 $-1 \le x \le 0$

Hence $\cos^{-1}(2x+1)$ is defined for $-1 \le x \le 0$.

Let
$$y = \cos^{-1}(2x + 1)$$

 $= \cos^{-1} u$ where $u = 2x + 1$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

$$-\frac{\sqrt{1-u^2}}{2} = -\frac{2}{\sqrt{1-(2x+1)^2}} \text{ provided } -1 < x < 0$$

$$= -\frac{2}{\sqrt{1-(2x+1)^2}}$$

Derivative of tan-1x

 $\tan^{-1} x$ is defined for all x.

Let
$$y = \tan^{-1} x$$
 \therefore $x = \tan y, -\frac{\pi}{2} < y < \frac{\pi}{2}$

$$\frac{dx}{dy} = \sec^2 y$$

$$= 1 + \tan^2 y$$

$$\therefore \frac{dy}{dx} = \frac{1}{1 + \tan^2 y} \quad \text{for } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$= \frac{1}{1 + x^2} \quad \text{for all } x$$

Derivative of $\tan^{-1} \frac{x}{a}$

 $\tan^{-1} \frac{x}{a}$ is defined for all x.

Let
$$y = \tan^{-1} \frac{x}{a}$$
 \therefore $x = a \tan y, -\frac{\pi}{2} < y < \frac{\pi}{2}$

$$\frac{dx}{dy} = a \sec^2 y$$

$$= a(1 + \tan^2 y)$$

$$\therefore \frac{dy}{dx} = \frac{1}{a(1 + \tan^2 y)} \quad \text{for } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

$$= \frac{a}{a^2 + x^2} \quad \text{for all } x$$

$$\frac{d}{dx}\left(\tan^{-1}\frac{x}{a}\right) = \frac{a}{a^2 + x^2} \quad \text{for all } x$$

Example 22

Find the derivative of $x\cos^{-1}(2x+1)$, stating the values of x for which the derivative is defined.

Solution

Following the previous example and using the product rule:

$$\frac{d}{dx}(x\cos^{-1}(2x+1)) = x \times \frac{-2}{\sqrt{-4x(x+1)}} + \cos^{-1}(2x+1)$$
$$= \frac{-2x}{\sqrt{-4x(x+1)}} + \cos^{-1}(2x+1)$$

On the RHS, the first term is defined for -1 < x < 0 and the second term is defined for $-1 \le x \le 0$. Thus the complete RHS is defined for -1 < x < 0 and these are the values for x for which the derivative is defined.

Example 23

Differentiate $\sin^{-1}(\cos x)$. Hence sketch the graph of $y = \sin^{-1}(\cos x)$ for $-\pi \le x \le \pi$.

Solution

Let
$$y = \sin^{-1}(\cos x)$$

= $\sin^{-1} u$ where $u = \cos x$

$$= \sin^{3} u \text{ where } u = c$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$= \frac{1}{\sqrt{1 - u^{2}}} \times (-\sin x)$$

$$= \frac{-\sin x}{\sqrt{1 - \cos^{2} x}}$$

$$= \frac{-\sin x}{\sqrt{\sin^{2} x}}$$

sin x

x	-π	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	π
у	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$	0	$-\frac{\pi}{2}$

Now
$$|\sin x| = \sin x$$
 for $\sin x \ge 0$, i.e. for $0 \le x \le \pi$
= $-\sin x$ for $\sin x \le 0$, i.e. for $-\pi \le x \le 0$

$$\therefore \frac{dy}{dx} = \begin{cases} \frac{-\sin x}{\sin x} = -1 & \text{for } 0 < x < \pi \\ \frac{-\sin x}{-\sin x} = 1 & \text{for } -\pi < x < 0 \end{cases}$$

 $\frac{dy}{dx}$ is not defined when $x = -\pi$, 0, π . If there were no restrictions on the domain, the graph would repeat itself (i.e. it would be periodic with period 2π). The range is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ and the derivative is not defined for any values of $x = n\pi$, $n = 0, \pm 1, \pm 2, ...$

Note that these sharp peaks are not turning points, because the function here changes sharply instead of smoothly. The point where the function changes sharply is called a cusp.

Example 24

- (a) Differentiate $\sin^{-1} x + \cos^{-1} x$. (b) Hence show that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

Solution

(a)
$$\frac{d}{dx}(\sin^{-1}x + \cos^{-1}x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0$$

(b) $\sin^{-1} x + \cos^{-1} x$ is a constant as its derivative is 0. The value of the constant can be found by evaluating the function at any x in its domain.

Where
$$x = 0$$
: $\sin^{-1} 0 + \cos^{-1} 0 = 0 + \frac{\pi}{2} = \frac{\pi}{2}$

$$\therefore$$
 $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ (You may wish to verify this by substituting other values for x.)