1. Find the value of y.

(1)
$$\log_5 25 = y$$

$$(2) \quad \log_3 1 = g$$

(1)
$$\log_5 25 = y$$
 (2) $\log_3 1 = y$ (3) $\log_{16} 4 = y$ (4) $\log_2 \frac{1}{8} = y$

$$(4) \quad \log_2 \frac{1}{8} = y$$

(5)
$$\log_5 1 = y$$

$$(6) \quad \log_2 8 = y$$

(5)
$$\log_5 1 = y$$
 (6) $\log_2 8 = y$ (7) $\log_7 \frac{1}{7} = y$ (8) $\log_3 \frac{1}{9} = y$

$$(8) \quad \log_3 \frac{1}{9} = y$$

(9)
$$\log_y 32 = 5$$

(9)
$$\log_y 32 = 5$$
 (10) $\log_9 y = -\frac{1}{2}$ (11) $\log_4 \frac{1}{8} = y$ (12) $\log_9 \frac{1}{81} = y$

(11)
$$\log_4 \frac{1}{8} = y$$

(12)
$$\log_9 \frac{1}{81} = y$$

2. Evaluate.

$$(1)$$
 $\log_3 1$

$$(2) \quad \log_4 4$$

(3)
$$\log_7 7^3$$

$$(4) \quad b^{\log_b 3}$$

$$(1) \quad \log_3 1 \qquad (2) \quad \log_4 4 \qquad (3) \quad \log_7 7^3 \qquad (4) \quad b^{\log_b 3} \qquad (3) \quad \log_{25} 5^3 \qquad (4) \quad 16^{\log_4 8}$$

$$(4) 16^{\log_4 8}$$

3. Write the following expressions in terms of logs of x, y and z.

$$(1) \quad \log x^2 y$$

$$(2) \quad \log \frac{x^3 y^2}{z}$$

(1)
$$\log x^2 y$$
 (2) $\log \frac{x^3 y^2}{z}$ (3) $\log \frac{\sqrt{x} \sqrt[3]{y^2}}{z^4}$ (4) $\log xyz$

$$(4) \quad \log xyz$$

(5)
$$\log \frac{x}{yz}$$

(5)
$$\log \frac{x}{yz}$$
 (6) $\log \left(\frac{x}{y}\right)^2$ (7) $\log (xy)^{\frac{1}{3}}$ (8) $\log x\sqrt{z}$

$$(7) \quad \log\left(xy\right)^{\frac{1}{3}}$$

(8)
$$\log x\sqrt{z}$$

(9)
$$\log \frac{\sqrt[3]{x}}{\sqrt[3]{yz}}$$
 (10) $\log \sqrt[4]{\frac{x^3y^2}{z^4}}$ (11) $\log x\sqrt{\frac{\sqrt{x}}{z}}$ (12) $\log \sqrt{\frac{xy^2}{z^8}}$

4. Write the following equalities in exponential form.

(1)
$$\log_3 81 = 4$$

(2)
$$\log_7 7 = 1$$

(1)
$$\log_3 81 = 4$$
 (2) $\log_7 7 = 1$ (3) $\log_{\frac{1}{2}} \frac{1}{8} = 3$ (4) $\log_3 1 = 0$

(4)
$$\log_3 1 = 0$$

(5)
$$\log_4 \frac{1}{64} = -3$$

(5)
$$\log_4 \frac{1}{64} = -3$$
 (6) $\log_6 \frac{1}{36} = -2$ (7) $\log_x y = z$ (8) $\log_m n = \frac{1}{2}$

(7)
$$\log_x y = z$$

$$(8) \quad \log_m n = \frac{1}{2}$$

5. Write the following equalities in logarithmic form.

(1)
$$8^2 = 64$$

$$(2) \quad 10^3 = 1000$$

(1)
$$8^2 = 64$$
 (2) $10^3 = 1000$ (3) $4^{-2} = \frac{1}{16}$ (4) $3^{-4} = \frac{1}{81}$

$$(4) \quad 3^{-4} = \frac{1}{81}$$

(5)
$$\left(\frac{1}{2}\right)^{-5} = 32$$
 (6) $\left(\frac{1}{3}\right)^{-3} = 27$ (7) $x^{2z} = y$ (8) $\sqrt{x} = y$

(6)
$$\left(\frac{1}{3}\right)^{-3} = 27$$

$$(7) \quad x^{2z} = y$$

$$(8) \quad \sqrt{x} = y$$

6. True or False?

(1)
$$\log\left(\frac{x}{y^3}\right) = \log x - 3\log y$$
 (2) $\log(a-b) = \log a - \log b$ (3) $\log x^k = k \cdot \log x$

$$(2) \quad \log(a-b) = \log a - \log b$$

$$(3) \quad \log x^k = k \cdot \log x$$

$$(4) \quad (\log a)(\log b) = \log(a+b)$$

(4)
$$(\log a)(\log b) = \log(a+b)$$
 (5) $\frac{\log a}{\log b} = \log(a-b)$ (6) $(\ln a)^k = k \cdot \ln a$

$$(6) \quad (\ln a)^k = k \cdot \ln a$$

$$(7) \quad \log_a a^a = a$$

$$(8) \quad -\ln\left(\frac{1}{x}\right) = \ln x$$

7. Solve the following logarithmic equations.

(1)
$$\ln x = -3$$

$$(2) \log_2(3x - 2) = 2$$

(3)
$$2 \log x = \log 2 + \log(3x - 4)$$
 (4) $\log x + \log(x - 1) = \log(4x)$

(4)
$$\log x + \log(x - 1) = \log(4x)$$

(5)
$$\log_3(x+25) - \log_3(x-1) = 3$$
 (6) $\log_9(x-5) + \log_9(x+3) = 1$

(6)
$$\log_{0}(x-5) + \log_{0}(x+3) = 1$$

$$(7) \log_{10} x + \log_{10} (x - 3) = 1$$

(8)
$$\log_2(x-2) + \log_2(x+1) = 2$$

8. Prove the following statements.

$$(1) \quad \log_{\sqrt{b}} x = 2\log_b x$$

(1)
$$\log_{\sqrt{b}} x = 2\log_b x$$
 (2) $\log_{\frac{1}{\sqrt{b}}} \sqrt{x} = -\log_b x$ (3) $\log_{b^4} x^2 = \log_b \sqrt{x}$

$$(3) \quad \log_{b^4} x^2 = \log_b \sqrt{x}$$

- 9. Given that $\log 2 = x$, $\log 3 = y$ and $\log 7 = z$, express the following expressions in terms of x, y, and z.
- (1) *log* 12
- (2) $\log 392$ (3) $\log \left(\frac{14}{3}\right)$ (4) $\log \left(\frac{6}{7}\right)$

- (5) *log* 1.5

- (6) log 10.5 (7) log 24.5 (8) $log(\frac{7776}{7})$

10. Solve the following equations.

(1)
$$3^x - 2 = 12$$
 (2) $3^{1-x} = 2$

(2)
$$3^{1-x} = 2$$

(3)
$$4^x = 5^{x+1}$$

(3)
$$4^x = 5^{x+1}$$
 (4) $6^{1-x} = 10^x$

$$(5) \quad 3^{2x+1} = 2^{x-2}$$

(6)
$$\frac{10}{1 + e^{-x}} = 2$$

13. 15 000\$ is invested in an account that yeilds 5% interest per year. After how many years will the account be worth 91 221.04\$ if the interest is compounded yearly?

14. 8 000\$ is invested in an account that yeilds 6% interest per year. After how many years will the account be worth 13709.60\$ if the interest is compounded monthly?

15.	Starting at the age of 40, an average man loses 5% of his hair every year. At what age should an average man expect to have half his hair left?

- 16. A bacteria culture starts with 10 00 bacteria and the number doubles every 40 minutes.
 - (a) Find a formula for the number of bacteria at time t.
 - (b) Find the number of bacteria after one hour.
 - (c) After how many minutes will there be 50 000 bacteria?