- **3.** OABC is a parallelogram in which $\overrightarrow{OA} = 6\vec{i}$ and $\overrightarrow{OC} = \vec{i} + 3\vec{j}$. Find:
- a) \overrightarrow{AB} and \overrightarrow{CB}
- b) the diagonal vectors \overrightarrow{OB} and \overrightarrow{CA}
- c) the vectors \overrightarrow{ON} and \overrightarrow{OM} , where N is the midpoint of OB and M is the midpoint of CA. What conclusion can you make?
- d) the vectors \overrightarrow{CP} and \overrightarrow{BP} , where P is the midpoint of OA

6 OABC is a quadrilateral, \$\overline{OA} = 4\overline{i}\$, \$\overline{OB} = 6\overline{i}\$ + 2\overline{j}\$ and \$\overline{OC} = 8\overline{j}\$.
(a) If \$P\$ and \$Q\$ are the midpoints of \$AB\$ and \$BC\$ respectively, find \$\overline{OP}\$, \$\overline{OQ}\$ and \$\overline{PQ}\$.
(b) Show that \$\overline{PQ} = kAC\$. What geometrical conclusion can you now make?

	OSING VECTORS IN GEOMETRIC I ROOFS				
7	The position vectors of the vertices A , B , C and D of a quadrilateral are $\underline{i} + 2\underline{j}$, $5\underline{i} + 2\underline{j}$, $4\underline{i} - \underline{j}$ and $2\underline{i} - \underline{j}$ respectively. Show that the diagonals intersect at right angles.				

15	P and Q are the midpoints of the sides OA and OB of triangle OAB. Use a vector method to prove that PQ is parallel to AB and half its length.

17 *O* is any point on the diagonal *BD* of the parallelogram *ABCD*. Prove that $\overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OD}$.

21 *ABCD* is a trapezium in which AB = x, DC = 2x, DA = y. If *E* is a point in *BC* such that $BE = \frac{1}{3}BC$, prove that $\overrightarrow{AC} \bullet \overrightarrow{DE} = \frac{2}{3} \left(4x^2 - y^2 \right)$.

D	ro	1770	٠+	h٠	at:
М		IV E	: .	H	41 T

26 The midpoint of the hypotenuse of a right-angled triangle is equidistant from the three vertices.

\mathbf{p}_1	ro	VΡ	+h	12	۲.

27 If the diagonals of a parallelogram are equal in length, then the parallelogram is a rectangle.

Prove that:

31 For any triangle PQR, $\left| \overline{PQ} \right| = \left| \overline{PR} \right| \cos P + \left| \overline{QR} \right| \cos Q$.

Prove tl	hat:
----------	------

32 The sum of the squares of the distances from a point *A* to two opposite vertices of a rectangle is equal to the sum of the squares of the distances from *A* to the remaining two vertices.