OTHER INDUCTION QUESTIONS

There is quite a range of situations in which you will use mathematical induction to prove results.

Example 20

Prove by induction that $3^n > 1 + 2n$ for all integers n > 1 (i.e. prove that $3^n - 1 - 2n > 0$).

Solution

Let S(n) be the statement that $3^n - 1 - 2n > 0$ for integer n.

Step 1 Prove that S(2) is true. (Note that n = 2 is the first case.)

Step 2 Assume S(k) is true for an integer $k \ge 2$.

i.e. assume that
$$3^k - 1 - 2k > 0$$
 [a]

Now prove that S(k + 1) is true if S(k) is true.

i.e. prove that
$$3^{k+1} - 1 - 2(k+1) > 0$$

LHS = $3 \times 3^k - 1 - 2k - 2$
= $3 \times 3^k - 2k - 3$

We need to link [a] to this, so we need to group $3^k - 1 - 2k$ together. However, the term in 3^k is multiplied by 3, so we need $3(3^k - 2k - 1)$. Form this group and 'pay back' the extra terms as required:

LHS =
$$3 \times 3^{k} - 6k - 3 + 4k$$

= $3(3^{k} - 2k - 1) + 4k$
> 0 as $3^{k} - 1 - 2k > 0$ from [a] and $k > 0$

Step 3 Conclusion

$$S(k+1)$$
 is true if $S(k)$ is true (Step 2)
 $S(2)$ is true (Step 1)

 \therefore by induction, S(n) is true for all integers $n \ge 2$.

Example 22

Prove that $3^{2n+4} - 2^{2n}$ is divisible by 5 for any positive integer n.

Solution

Step 1
$$n = 1$$
: LHS = $3^6 - 2^2 = 729 - 4 = 725$, which is divisible by 5.

Hence the result is true when n = 1.

Step 2 Assume the result is true for n = k, i.e. assume that $3^{2k+4} - 2^{2k} = 5M$, where M is a positive integer. Prove the result is true for n = k + 1, i.e. prove that $3^{2k+6} - 2^{2k+2}$ is divisible by 5.

Exp =
$$3^{2k+6} - 2^{2k+2}$$

= $9 \times 3^{2k+4} - 4 \times 2^{2k}$
= $9 \times 3^{2k+4} - 9 \times 2^{2k} + 5 \times 2^{2k}$
= $9 \times 5M + 5 \times 2^{2k}$
= $5(9M + 2^{2k})$, which is divisible by 5.

Step 3 The result is true for n = k + 1 if it is true for n = k. But the result is true for n = 1, hence it is true for n = 1 + 1 and by the principle of mathematical induction it is true for all $n \ge 1$.

OTHER INDUCTION QUESTIONS

Example 21

Prove that $n^2 \ge 2n + 1$ for positive integers $n \ge 3$.

Solution

Let S(n) be the statement that $n^2 - (2n + 1) > 0$.

Step 1 Prove that S(3) is true.

$$LHS = 3^{2} - 6 - 1$$
$$= 9 - 7$$

= 2 > 0Hence S(3) is true.

Step 2 Assume that S(k) is true, i.e. assume that $k^2 - 2k - 1 > 0$.

Prove that S(k + 1) is true if S(k) is true, i.e. $(k + 1)^2 - 2(k + 1) - 1 > 0$.

LHS =
$$(k+1)^2 - 2(k+1) - 1$$

= $k^2 + 2k + 1 - 2k - 2 - 1$
= $k^2 - 2k - 1 + 2k - 1$
> $0 + 2k - 1$
> 0 as $2k - 1 > 5$ when $k \ge 3$.

Hence S(k + 1) is true if S(k) is true.

Step 3 But S(3) is true so by the principle of mathematical induction S(n) is true for all $n \ge 3$.

Example 23

Prove that every integer greater than 1 is either prime or a product of primes.

Solution

Let S(n) be the proposition that n is either prime or a product of primes, $n \ge 2$.

- Step 1 2 is a prime : S(2) is true.
- Step 2 Assume S(2), S(3), S(4), ... S(k) are true. Thus prove that S(k+1) is true.
 - i.e. assume 3 is either prime or a product of primes assume 4 is either prime or a product of primes assume 5 is either prime or a product of primes ...

assume k is either prime or a product of primes.

Now k+1 is either prime, in which case S(k+1) is true, or k+1 is composite, in which case $k+1=p\times q$ where p and q are integers less than k (so that both p and q are either prime or a product of primes, because both p and q are in the set of assumed primes or products of primes.)

 $\therefore k+1=p\times q$ is a product of primes and S(k+1) is true.

Step 3 Conclusion

S(k + 1) is true if S(2), S(3), S(4), ... S(k) are true. S(2) is true.

 \therefore by induction, S(n) is true for all integers $n \ge 2$.

OTHER INDUCTION QUESTIONS

Example 24

Construct a proof by induction of the geometrical property that 'the angle sum of an n-sided polygon is $(n-2) \times 180^{\circ}$ for all integers $n \ge 3$ '.

Solution

Let S(n) be the statement that the angle sum of an n-sided polygon is $(n-2) \times 180^{\circ}$ for integer n.

Step 1 Prove that S(3) is true.

When n = 3, angle sum = $(3 - 2) \times 180^{\circ} = 180^{\circ}$, which is the angle sum of a triangle. $\therefore S(3)$ is true.

Step 2 Assume S(k) is true for an integer k > 3.

i.e. assume that the angle sum of a k-sided polygon is $(k-2) \times 180^{\circ}$ [a]

Now prove that S(k + 1) is true if S(k) is true.

i.e. prove that the angle sum of a (k+1)-sided polygon is $([k+1]-2) \times 180^{\circ}$

$$=(k-1)\times180^{\circ}$$

In the (k + 1)-sided polygon, construct a diagonal that divides the polygon into a k-sided polygon and a triangle. (This can always be done.)

Angle sum of (k + 1)-sided polygon = (angle sum of k-sided polygon) + (angle sum of triangle)

using [a]: $= (k-2) \times 180^{\circ} + 180^{\circ}$

 $=(k-1) \times 180^{\circ}$ (as required)

Step 3 Conclusion

S(k+1) is true if S(k) is true (Step 2)

S(3) is true (Step 1)

 \therefore by induction, S(n) is true for all integers $n \ge 3$.