Given the graph of y = f(x), it is often useful or necessary to draw the graphs of the absolute value functions y = |f(x)| and y = f(|x|). Sometimes these graphs will be the same, but not always.

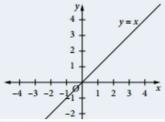
y = |f(x)| is defined wherever f(x) exists. $|f(x)| \ge 0$ if $-\infty < f(x) < \infty$. |f(x)| > 0 wherever f(x) < 0.

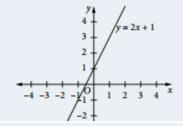
y = f(|x|) is the same as y = f(x) for $x \ge 0$, but different for x < 0.

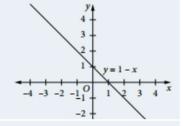
Example 7

In each part, use the graph of the given function to draw the graph of y = |f(x)| and the graph of y = f(|x|).

- (a) Given the graph of y = x, draw (b) Given the graph of y = 2x + 1, y = |x|.
- draw y = |2x + 1| and y = 2|x| + 1.
- (c) Given the graph of y = 1 x, draw y = |1 - x| and y = 1 - |x|.

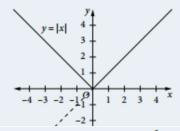






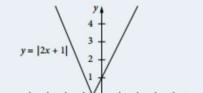
Solution

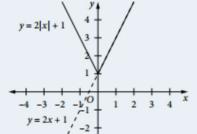
(a) The graphs are the same for x≥ 0. $|x| \ge 0$ for all x.



(b) The graphs of y = 2x + 1 and y = |2x + 1| are the same for $x \ge -\frac{1}{2}$. $|2x+1| \ge 0$ for all x.

The graphs of y = 2x + 1 and y = 2|x| + 1 are the same for $x \ge 0$. $|2x+1| \ge 1$ for all x.

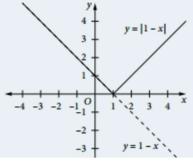


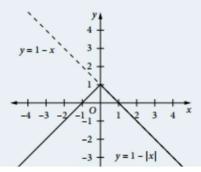


(c) The graphs of y = 1 - x and y = |1 - x| are the same for $x \le 1$. $|1-x| \ge 0$ for all x.

The graphs of y = 1 - x and y = 1 - |x| are the same for $x \ge 0$.

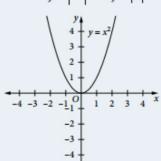
 $1 - |x| \le 1$



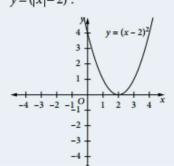


Example 8

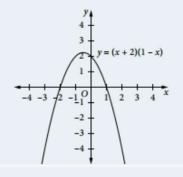
(a) Given the graph of $y = x^2$, draw $y = |x^2|$ and $y = |x|^2$.



(b) Given the graph of $y = (x-2)^2$, $\text{draw } y = |(x-2)^2| \text{ and }$ $y = (|x|-2)^2$.



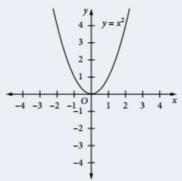
(c) Given the graph of y = (x+2)(1-x), draw y = |(x+2)(1-x)| and y = (|x|+2)(1-|x|).



Solution

(a) The graphs of $y = |x^2|$ and $y = |x|^2$ are the same as the original graph $y = x^2$.

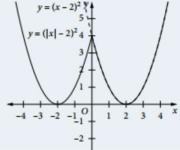
By the definition, $|x| = \sqrt{x^2}$ so $|x|^2 = x^2$.



(b) The graphs of $y = (x-2)^2$ and $y = \left| (x-2)^2 \right|$ are the same.

The graphs of $y = (x - 2)^2$ and $y = (|x| - 2)^2$ are the same for $x \ge 0$.

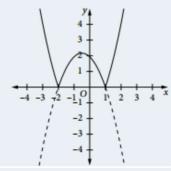
There is a cusp at (0, 4). x = 0 is an axis of symmetry. $(|x|-2)^2 \ge 0$



(c) The graphs of y = (x+2)(1-x) and y = |(x+2)(1-x)| are the same for $-2 \le x \le 1$.

There is a cusp at (-2, 0) and (1, 0).

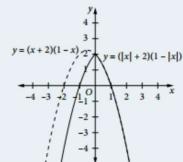
 $x = -\frac{1}{2}$ is an axis of symmetry.



The graphs of y = (x + 2)(1 - x) and y = (|x| + 2)(1 - |x|) are the same for $x \ge 0$.

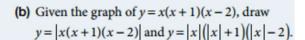
 $(|x|+2) (1-|x|) \le 2. (0, 2)$ is not a turning point.

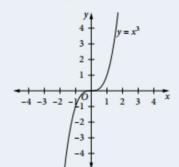
x = 0 is an axis of symmetry.

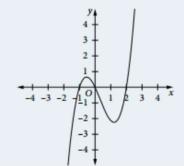


Example 9

(a) Given the graph of $y = x^3$, draw $y = |x^3|$ and $y = |x|^3$.



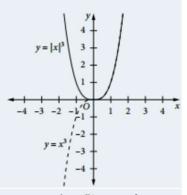




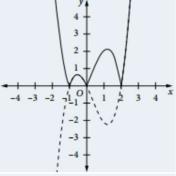
Solution

(a) $x^3 = |x^3|$ for $x \ge 0$, i.e. the curves are identical for $x \ge 0$. Also $x^3 = |x|^3$ for $x \ge 0$, i.e. the curves are identical for $x \ge 0$.

The graph of $y = |x|^3$ is the same as the graph of $y = |x|^3$. They are both the solid line in the graph.



(b) For y = |x(x+1)(x-2)|: The graphs meet at (-1, 0), (0, 0), (2, 0). The graphs are the same for $-1 \le x \le 0$ and $x \ge 2$. $|x(x+1)(x-2)| \ge 0$ for all x.

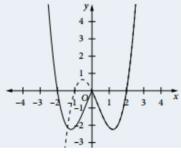


For y = |x|(|x|+1)(|x|-2):

The graphs meet at (0, 0), (2, 0) and $(-\sqrt{2}, -2)$. This last point can be solved using graphing software.

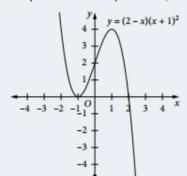
The graphs are the same for $x \ge 0$. There is a cusp at (0, 0).

 $|x|(|x|+1)(|x|-2) \ge -2.$



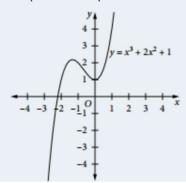
(c) Given the graph of $y = (2 - x)(x + 1)^2$, draw

$$y = |(2-x)(x+1)^2|$$
 and $y = (2-|x|)(|x|+1)^2$.



(d) Given the graph of $y = x^3 + 2x^2 + 1$, draw

$$y = |x^3 + 2x^2 + 1|$$
 and $y = |x|^3 + 2|x|^2 + 1$.

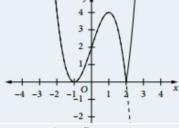


(c) For $y = (2-x)(x+1)^2$:

The graphs are the same for $x \le 2$.

 $|(2-x)(x+1)^2| \ge 0.$ (2, 0) is a cusp.

(-1, 0) is a minimum turning point, (1, 4) is a maximum turning point.



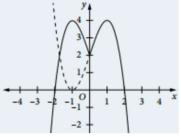
For $y = (2-|x|)(|x|+1)^2$:

The graphs are the same for $x \ge 0$.

The curves also intersect at $(-\sqrt{3}, 2)$.

(0, 2) is a cusp. (-1, 4) and (1, 4) are maximum turning points.

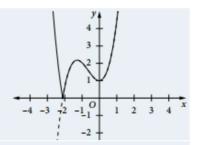
$$(2-|x|)(|x|+1)^2 \le 4$$



(d) For $y = |x^3 + 2x^2 + 1|$:

The graphs are the same for about $x \ge -2.2$.

(-2.2, 0) is a cusp. (0, 1) is a minimum turning point. (-1.33, 2.19) is a maximum turning point.



For $y = |x|^3 + 2|x|^2 + 1$: The graphs are the same for $x \ge 0$.

 $|x|^3 + 2|x|^2 + 1 \ge 1$

(0, 1) is a minimum turning point.

