1 Which Argand diagram best shows the fourth roots of 16i?

Α

В

С

D

- **2** For each of the following, find the values of *z* (in mod–arg form) and plot them on the complex plane.

- (a) $z^5 = 1$ (b) $z^4 + 1 = 0$ (c) $z^2 = i$ (d) $z^3 + 8i = 0$ (e) $z^4 = 8(\sqrt{3} + i)$

- 4 The point $1 + \sqrt{3}i$ and two other points are on the circumference of a circle with centre *O* and radius 2. The three points are the vertices of an equilateral triangle.
 - (a) Find the complex numbers represented by the two other points.
 - (b) Find the cubic equation that has these three complex numbers as its roots.

- **5** If 1, w_1 and w_2 are the cube roots of unity, prove the following:
 - (a) $w_1 = \overline{w_2} = w_2^2$ (b) $w_1 + w_2 = -1$
- (c) $w_1 w_2 = 1$

6 If w is a non-real cube root of unity (i.e. w is a non-real root of $z^3 = 1$), show the following:

(a)
$$1 + w + w^2 = 0$$

(b)
$$(1-w)(1-w^2)=3$$

Now evaluate the following:

(c)
$$(1+w)^3$$

(d)
$$(1+2w+3w^2)(1+2w^2)$$

(e)
$$(w^2 + 2w + w^3)(2w^2 + w + w^3)$$

(c)
$$(1+w)^3$$
 (d) $(1+2w+3w^2)(1+2w^2+3w)$ (e) $(w^2+2w+w^3)(2w^2+w+w^3)$ (f) $(1-w)(1-w^2)(1-w^4)(1-w^5)(1-w^7)(1-w^8)$

- 8 (a) Find the roots of z⁷ = 1 in mod-arg form and show them on an Argand diagram.
 (b) If w is a non-real root, show that w + w² + w³ + w⁴ + w⁵ + w⁶ = -1.

 - (c) Show that the quadratic equation $z^2 + z + 2 = 0$ has roots $w + w^2 + w^4$ and $w^3 + w^5 + w^6$.
 - (d) Show that $\cos \frac{\pi}{7} = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \frac{1}{2}$.

- **11 (a)** Show that $z_1 = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$ is a root of $z^4 + z^3 + z^2 + z + 1 = 0$.
 - **(b)** Find all four roots of $z^4 + z^3 + z^2 + z + 1 = 0$.
 - (c) Show that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$.
 - (d) Deduce that $\cos \frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{4}$.