1 Find the derivative of:

(a)
$$y = 3x^2 + 2x - 1$$

(b)
$$y = 4x - 3x^2$$
 (c) $y = 7x - 4x^2$

(c)
$$y = 7x - 4x^2$$

(d)
$$y = x^4 + x^2 + 1$$

(e)
$$y = x^5 - x^3 + x$$

(d)
$$y = x^4 + x^2 + 1$$
 (e) $y = x^5 - x^3 + x$ (f) $v = t^3 + 4t^2 - 2t + 5$

2 Find the derivative of:

(a)
$$y = x^{\frac{3}{2}}$$

(b)
$$y = \frac{2}{x}$$

(c)
$$y = 2\sqrt{x}$$

(d)
$$v = \sqrt[3]{t^2}$$

(e)
$$h(m) = \frac{1}{m^3}$$

(a)
$$y = x^{\frac{3}{2}}$$
 (b) $y = \frac{2}{x}$ (c) $y = 2\sqrt{x}$ (d) $v = \sqrt[3]{t^2}$ (e) $h(m) = \frac{1}{m^3}$ (f) $f(x) = \frac{1}{\sqrt{x}}$

4 Expand each expression and find $\frac{dy}{dx}$.

(a)
$$y = (x-1)(x+2)$$
 (b) $y = 3x(x^2-2)$ (c) $y = (2x-3)^3$

(b)
$$y = 3x(x^2 - 2)$$

(c)
$$y = (2x - 3)^2$$

(d)
$$y = (x-4)(x+4)$$

(e)
$$y = (2x - 3)^3$$

(c)
$$y = (2x-3)^2$$

(f) $y = (x-2)(x+1)(3x+1)$

6 Find f'(x).

(a)
$$f(x) = x + \sqrt{x}$$

(b)
$$f(x) = x^2 + \frac{1}{x}$$

(a)
$$f(x) = x + \sqrt{x}$$
 (b) $f(x) = x^2 + \frac{1}{x}$ (c) $f(x) = x^2 + x + 1 + \frac{1}{x} + \frac{1}{x^2}$ (d) $f(x) = x^{\frac{2}{3}} + x^{\frac{1}{3}}$ (e) $f(x) = \left(x - \frac{1}{x}\right)^2$ (f) $f(x) = x\sqrt{x}$

(d)
$$f(x) = x^{\frac{2}{3}} + x^{\frac{1}{3}}$$

(e)
$$f(x) = \left(x - \frac{1}{x}\right)^2$$

$$(f) \quad f(x) = x\sqrt{x}$$

- 7 For $f(x) = 3x^2 2x + 7$, indicate whether each statement is correct or incorrect.
 - (a) f'(x) = 6x 2 (b) f'(0) = 7 (c) f(1) = 8 (d) f'(2) = 10

- **8** For each of the following functions, find the value of x for which f'(x) = 0.
 - (a) $f(x) = x^2 4$
- **(b)** $f(x) = 2x^3 6x$
- (c) $f(x) = x^3 4x^2$

9 Find the gradient of the curve $y = x^2 - x - 6$ at the points where y = 0.

11 Show that the graph of $y = x^2 + 4x - 12$ crosses the x-axis at two points. Find the gradient of the curve at these points.

- 13 Find the coordinates of the points on the curve $y = x^2 5x + 6$ at which the tangent:
 - (a) makes an angle of 45° with the x-axis
 - (b) is parallel to the line with equation 3x + y 4 = 0
 - (c) is perpendicular to the line with equation 2y x + 3 = 0.

- 17 The profit function, in dollars, for a manufacturer is given by the function $P = 6x \frac{x^2}{2} 10$, where x is the number of items produced in a day up to a maximum of 6 items.
 - (a) If the break-even point is when the profit is zero, what is the break-even point for this manufacturer?
 - **(b)** Find $\frac{dP}{dx}$.
 - (c) For what values of x is $\frac{dP}{dx} > 0$?

- **20** (a) Given $f(x) = x^2 + 3$, find f'(x).
 - **(b)** On the same diagram sketch the graph of y = f(x) and y = f'(x).

