1 Four vectors, a, b, c and d, are shown in the diagram. Which one of the following statements is true?

- A a+c=b+d B a+b=c+d
- C a+b+c+d=0 D b+c=a+d
- 2 In the parallelogram ABCD shown, the point of intersection of the diagonals is O. The vector \overrightarrow{OD} is equal to:

- A $\frac{1}{2}(a-b)$ B $\frac{1}{2}(a+b)$
- C $\frac{1}{2}b-a$ D $\frac{1}{2}(b-a)$
- 3 If vector \underline{a} is represented by the ordered pair (-2, 3), then the vector $-3\underline{a}$ is represented by the ordered pair:
 - A (-6, 9)
- B (-6, -9) C (6, -9)
- D (6, 9)
- 4 The vector that runs from the point (-3, 1) to the point (3, -2) can be represented by the column vector:
- $B \begin{pmatrix} 6 \\ -3 \end{pmatrix} \qquad C \begin{pmatrix} -6 \\ 3 \end{pmatrix} \qquad D \begin{pmatrix} 0 \\ -3 \end{pmatrix}$
- 5 Which one of the following vectors is parallel to the vector $\underline{f} = -6\underline{i} + 4\underline{j}$?
- A a = 24i 16j B b = 3i + 2j C c = -24i 16j D d = -3i 2j
- 6 Which one of the following vectors is parallel to the vector a = -3i + 7j and has a magnitude of $2\sqrt{58}$?

 - A $-24\underline{i} + 28\underline{j}$ B $-\frac{3}{2}\underline{i} + \frac{7}{2}\underline{j}$ C $3\underline{i} 7\underline{j}$ D $-6\underline{i} + 14\underline{j}$

- 7 Given position vectors $\overrightarrow{OA} = -3\underline{i} + 4\underline{j}$ and $\overrightarrow{OB} = 4\underline{i} + 3\underline{j}$, what is the value of $|\overrightarrow{AB}|$?
 - A $\sqrt{2}$

- **B** $5\sqrt{2}$ **C** $2\sqrt{5}$ **D** $7\sqrt{2}$
- 8 If $\underline{a} = -4\underline{i} + 2\underline{j}$ and $\underline{b} = \underline{i} 4\underline{j}$, then $2\underline{a} \underline{b}$ is: A $-5\underline{i} 2\underline{j}$ B $-6\underline{i} + 10\underline{j}$ C $-9\underline{i} + 8\underline{j}$

- D -10i 4j

- 9 What is the magnitude of the vector $\underline{a} = 4i 2j$?

- **B** $2\sqrt{3}$ **C** $2\sqrt{5}$

- 20
- 10 Which of the following vectors is parallel to the vector $2\underline{i} + 3\underline{j}$ and has a magnitude of $2\sqrt{13}$?

 A $-4\underline{i} + 6\underline{j}$ B $4\underline{i} 6\underline{j}$ C $6\underline{i} + 9\underline{j}$ D $-4\underline{i} 6\underline{j}$

- 19 Label the following vectors that have been drawn on the Cartesian plane:
 - a the position vector of (-3, 2)
 - \overrightarrow{OB} where B is $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$
 - \underline{c} the position vector of $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ \overline{OD} where D is (1, -4)

- 26 Find the exact values of the unknown pronumerals in the following vector equations.

 - (a) $(2a-3b)\underline{i} 2b\underline{j} = 5\underline{i} 12\underline{j}$ (b) $(2f+5)\underline{i} + (8-7g)\underline{j} = f(3\underline{i} 2\underline{j}) + 2g(\underline{i} + 4\underline{j})$
 - (c) $(a^2 9a)\underline{i} + (2b^3 + 1)\underline{j} = 10\underline{i} 5\underline{j}$ (list multiple solutions)

- 27 Consider the vector $\underline{a} = -9\underline{i} 3\underline{j}$.
 - (a) Find â.
- **(b)** Find the vector \underline{b} in the direction of \underline{a} with a magnitude of 5.

- 28 Find the scalar product $\underline{a} \bullet \underline{b}$, given the following pairs of vectors.
 - (a) $\underline{a} = -4\underline{i} + \underline{j} \text{ and } \underline{b} = 2\underline{i} + 7\underline{j}$ (b) $\underline{a} = 3\underline{i} 7\underline{j} \text{ and } \underline{b} = 6\underline{i} \underline{j}$

29 Calculate the scalar product and hence show that the vectors $\underline{a} = -3\underline{i} + 5\underline{j}$ and $\underline{b} = 10\underline{i} + 6\underline{j}$ are perpendicular.

30 For each of the following pairs of vectors, find the scalar projection of \underline{a} onto \underline{b} .

(a)
$$a = 3i - 4j$$
 and $b = 6i + 3j$

(a)
$$a = 3i - 4j$$
 and $b = 6i + 3j$ (b) $a = -5i + 2j$ and $b = i - 7j$

- 31 For a = 2i 5j and b = 4i + j, find:
 - (a) the vector projection of a onto b
- (b) the vector projection of \underline{a} perpendicular to \underline{b} .

- 32 The points A, B and C have coordinates (2, -5), (5, 9) and (-9, 12) respectively.
 - (a) Find the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} in column vector form.
- (b) Find \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} .

- (c) Show that $\triangle ABC$ is an isosceles triangle.
- (d) Find the coordinates of a point *D* such that *ABCD* forms a rhombus.
- (e) Find the coordinates of the point of intersection of the diagonals of the rhombus ABCD.

- 33 (a) If $\underline{a} = -4e\underline{i} + 2e\underline{j}$, e > 0 and $|\underline{a}|^2 = 40$, find the exact value of e. (b) Hence, find $\hat{\underline{a}}$.
 - (c) Find the vector \underline{b} that is parallel to \hat{a} with $|\underline{b}| = 10$.
 - (d) If $\underline{c} = 4 f \underline{i} 3 f \underline{j}$, f > 0 and $|\underline{c}|^2 = 250$, find the exact value of f. (e) Hence find $\underline{\hat{c}}$. (f) Find the vector \underline{d} in the direction of $\underline{\hat{c}}$ where $|\underline{d}|^2 = 20$. (g) Find $\underline{b} \underline{d}$.

- 34 Consider two vectors $\underline{a} = 2\underline{i} 5\underline{j}$ and $\underline{b} = -3\underline{i} \underline{j}$.
 - (a) Find the scalar projection of \underline{a} in the direction of \underline{b} . (b) Find the vector projection of \underline{a} onto \underline{b} .
 - (c) Find the vector projection of \underline{a} perpendicular to the direction of \underline{b} .
 - (d) Hence, express the vector $\underline{a} = 2\underline{i} 5\underline{j}$ in terms of projections parallel to and perpendicular to $\underline{b} = -3\underline{i} \underline{j}$.

35 $\triangle ABC$ is right-angled with M being the midpoint of the hypotenuse AC, as shown. Let $\overrightarrow{AM} = a$ and $\overrightarrow{BM} = b$.

- (a) Find \overrightarrow{AB} and \overrightarrow{BC} in terms of \underline{a} and \underline{b} .
- (b) Prove that M is equidistant from the three vertices of ΔABC .

- 36 OABC is a parallelogram where $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$. M and N are the midpoints of \overrightarrow{AB} and \overrightarrow{BC} respectively.
 - (a) Draw a diagram of parallelogram OABC, showing the given vectors and midpoints.
 - (b) Find the vectors \overrightarrow{OM} and \overrightarrow{ON} in terms of a and c and show them on your diagram.
 - (c) Hence find the vector \overline{MN} in terms of \underline{a} and \underline{c} .
 - (d) Find vector \overrightarrow{AC} in terms of \overrightarrow{q} and \overrightarrow{c} and show this on your diagram.
 - (e) P is a point on \overrightarrow{OM} such that $\overrightarrow{OP} = \frac{2}{3}\overrightarrow{OM}$. Find the vector \overrightarrow{OP} in terms of \underline{a} and \underline{c} .
 - (f) Q is a point on \overrightarrow{ON} such that $\overrightarrow{OQ} = \frac{2}{3}\overrightarrow{ON}$. Find the vector \overrightarrow{OQ} in terms of \underline{a} and \underline{c} .
 - (g) Show that vector \overrightarrow{MN} is parallel to and half the magnitude of \overrightarrow{AC} .
 - (h) Find vectors \overrightarrow{AP} , \overrightarrow{PQ} and \overrightarrow{QC} , and hence prove that the diagonal \overrightarrow{AC} is trisected at P and Q.