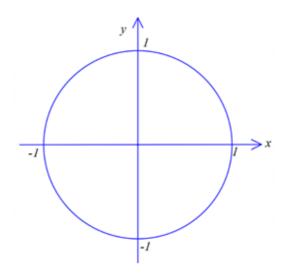
- **1** Convert to degrees:

- 3π

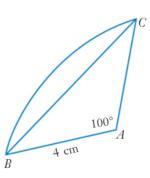
- **2** Convert to radians in terms of π :
 - **a** 135°
- **b** 30°
- c 150°
- **d** 240°
- 300°

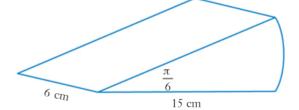

- **f** 63°
- **g** 15°
- h 450° i 225°
- j 120°

- **3** Change to radians, correct to 2 decimal places:
 - a 56°
- **b** 68°
- c 127°
- **d** 289°
- 312°

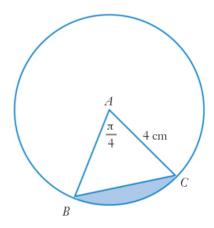
- **4** Change to radians, correct to 2 decimal places:
 - a $18^{\circ}34'$
- **b** 35°12′
- **c** 101°56′
- **d** 88°29′
- 50°39′
- 5 Convert each radian measure into degrees and minutes, to the nearest minute:
 - **a** 1.09
- **b** 0.768
- c 1.16
- **d** 0.99
- e 0.32

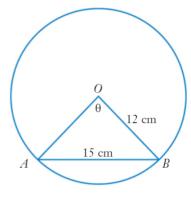
- 6 Find correct to 2 decimal places:
 - sin 0.342
- **b** cos 1.5
- **c** tan 0.056 **d** cos 0.589 **e** tan 2.29


ALL EXACT VALUES FROM ANGLES IN RADIANS


Angle in radians	Sine	Cosine	Tangent
0			
<u>π</u> 6			
<u>π</u> 4			
<u>#</u> 3			
<u>#</u> 2			
$\frac{2\pi}{3}$			
$\frac{3\pi}{4}$			
<u>5π</u> 6			
π			
$\frac{7\pi}{6}$			
<u>5π</u> 4			
$\frac{4\pi}{3}$			
$\frac{3\pi}{2}$			
<u>5π</u> 3			
<u>7π</u> 4			
11 1 6			
2π			

- 1 Find the exact arc length of a circle with:
 - α radius 4 cm and angle subtended π
 - **b** radius 3 m and angle subtended $\frac{\pi}{3}$
 - c radius 10 cm and angle subtended $\frac{5\pi}{6}$
- 2 Find the arc length, correct to 2 decimal places, given:
 - a radius 1.5 m and angle subtended 0.43
 - **b** radius 3.21 cm and angle subtended 1.22
- **3** The angle subtended at the centre of a circle of radius 3.4 m is 29°51′. Find the length of the arc cut off by this angle, correct to 1 decimal place.
- 4 The arc length when a sector of a circle is subtended by an angle of $\frac{\pi}{5}$ at the centre is $\frac{3\pi}{2}$ m. Find the radius of the circle.
- 5 The radius of a circle is 3 cm and an arc is $\frac{2\pi}{7}$ cm long. Find the angle subtended at the centre of the circle by the arc.
- **7** A circle with area 60 cm² has an arc 8 cm long. Find the angle that is subtended at the centre of the circle by the arc.
- **8** A circle with circumference 124 mm has a chord cut off it that subtends an angle of 40° at the centre. Find the length of the arc cut off by the chord.
- 1 Find the exact area of the sector of a circle whose radius is:
 - **a** 4 cm and the subtended angle is π **b** 3 m and the subtended angle is $\frac{\pi}{3}$
 - **c** 10 cm and the subtended angle is $\frac{5\pi}{6}$ **d** 3 cm and the subtended angle is 30°
- 10 The area of a sector is $\frac{3\pi}{10}$ cm² and the arc length cut off by the sector is $\frac{\pi}{5}$ cm. Find the angle subtended at the centre of the circle and the radius of the circle.


16 Arc BC subtends an angle of 100° at the centre A of a circle with radius 4 cm. Find the perimeter of sector ABC.


17 A wedge is cut so that its cross-sectional area is a sector of a circle with radius 15 cm and subtending an angle of $\frac{\pi}{6}$ at the centre. Find the exact volume of the wedge.

- 14 a Find the area of the sector of a circle with radius 4 cm if the angle subtended at the centre is $\frac{\pi}{4}$.
 - **b** Find the length of *BC* to 1 decimal place.
 - **c** Find the exact area of triangle *ABC*.
 - **d** Hence find the exact area of the shaded minor segment of the circle.

- **15** A triangle *OAB* is formed where *O* is the centre of a circle of radius 12 cm and *A* and *B* are endpoints of a 15 cm chord.
 - **a** Find the angle subtended at the centre of the circle, in degrees and minutes.
 - **b** Find the area of $\triangle OAB$ correct to 1 decimal place.
 - Find the area of the minor segment cut off by the chord, correct to 2 decimal places.
 - **d** Find the area of the major segment cut off by the chord, correct to 2 decimal places.

