- **2** Find the coordinates of the turning point of the curve $y = xe^{-0.5x}$ and state whether it is a maximum or minimum. Find the values of x for which:
 - (a) y > 0
- (b) $\frac{dy}{dx} > 0$

- **3** Consider the function defined by the rule $f(x) = 3 e^{-x}$, $x \ge 0$.
 - (a) Find the value of f(0) and f'(0).
- **(b)** Show that f'(x) > 0 for all values of x in the domain.
- (c) What is the value of $\lim_{x\to\infty} f(x)$?
- (d) Sketch the graph of f(x).

- 4 Consider the function defined by $f(x) = e^{-x^2}$ for all values of x.
 - (a) Find f'(x).
 - **(b)** Find the values of x for which:
- (i) f'(x) = 0 (ii) f'(x) > 0 (iii) f'(x) < 0.

(c) Sketch the graph of the function.

- **8** The rectangle *PQRS* has two vertices on the *x*-axis and two on the curve $y = e^{-x^2}$, as shown in the diagram. Find:
- $y = e^{-x^2}$ $P(x, e^{-x^2})$
- (a) the value of x for which the rectangle has a maximum area
- (b) the maximum area of the rectangle.

9 Find the coordinates of any maximum or minimum turning points on the curve $y = \frac{\ln x}{x}$.

- **12** (a) Find all values of x between 0 and 2π for which $\log_e(\sin x)$ is defined.
 - **(b)** Find the maximum value of $\log_e (\sin x)$ and when it occurs.

- 14 When a uniform chain is suspended at two fixed points, it hangs in a catenary whose equation is $y = \frac{1}{2a} (e^{ax} + e^{-ax})$
 - (a) Sketch the curve when a = 0.5 and the fixed points are at the same horizontal level and 8 units apart.
 - (b) Find the sag at the centre.
 - (c) Find the angle of inclination of the chain at the supports.

- **15** f(x) is defined as $f(x) = e^{-x} \cos x$ in the domain $[0, \pi]$.
 - (a) Find f(0), $f\left(\frac{\pi}{2}\right)$ and $f(\pi)$.
- **(b)** Find f'(x).
- (c) Evaluate f'(0) and $f'(\frac{3\pi}{4})$.
- (d) Sketch the graph of y = f(x).