- **1** Solve for values of θ and x between 0 and 2π inclusive:
 - (a) $\sin\theta = \frac{\sqrt{3}}{2}$
- **(b)** $\tan x = -1$
- (c) $\cos x = -0.5$ (d) $\sqrt{3} \tan \theta = 1$

- **1** Solve for values of θ and x between 0 and 2π inclusive:
- (e) $\sin 2\theta = -\frac{1}{2}$ (f) $\csc \theta = -2$ (g) $\cot 2x = \sqrt{3}$ (h) $\sec 2\theta = \sqrt{2}$

- **3** The solution to $\sqrt{2} \sin 2\theta + 1 = 0$ for $0 \le \theta \le 2\pi$ is:
 - A $\frac{5\pi}{4}, \frac{7\pi}{4}$
- $B = \frac{5\pi}{8}, \frac{7\pi}{8}$
- C $\frac{5\pi}{8}, \frac{7\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8}$ D $\frac{5\pi}{4}, \frac{7\pi}{4}, \frac{13\pi}{4}, \frac{15\pi}{4}$

- 4 Solve for $-\pi \le x \le \pi$: (a) $2\cos 2x + 1 = 0$

5 Solve between 0 and 2π inclusive:

(a)
$$\sin\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$
 (b) $\tan\left(\theta - \frac{\pi}{3}\right) = -\sqrt{3}$ (c) $\cos\left(2x + \frac{\pi}{3}\right) = \frac{1}{2}$

(b)
$$\tan\left(\theta - \frac{\pi}{3}\right) = -\sqrt{3}$$

(c)
$$\cos\left(2x + \frac{\pi}{3}\right) = \frac{1}{2}$$

- **5** Solve between 0 and 2π inclusive:
- (e) $\tan\left(2\theta \frac{\pi}{4}\right) + 1 = 0$ (f) $2\cos\left(2x \frac{\pi}{3}\right) = \sqrt{3}$

- 7 If $0 \le x \le 2\pi$, the solution to $\sin x \le \frac{\sqrt{3}}{2}$ is:

- **A** $x \le \frac{\pi}{3}$ **B** $x \le \frac{\pi}{3}$ or $x \ge \frac{2\pi}{3}$ **C** $0 \le x \le \frac{\pi}{3}$ or $x \ge \frac{2\pi}{3}$ **D** $0 \le x \le \frac{\pi}{3}$ or $\frac{2\pi}{3} \le x \le 2\pi$

- 8 If $0 \le x \le 2\pi$, solve: (a) $\sin x \ge \frac{1}{2}$ (b) $\cos x < \frac{1}{2}$