Use mathematical induction to prove the following results.

1
$$n^2 - 11n + 30 \ge 0$$
 for all integers $n \ge 6$. 2 $n^2 > -5n + 14$ for all integers $n > 2$.

- **8** (a) Prove that $\frac{d}{dx}(x^n) = nx^{n-1}$ for any positive integer *n* by:
 - (i) first proving S(1) that $\frac{d}{dx}(x) = 1$
 - (ii) then writing $x^{n+1} = x \times x^n$ and using the product rule to prove that S(k+1) is true.
 - (b) Summarise your results to give the proof of the result by induction.

14 Prove that $\frac{d^n}{dx^n}(x^n) = n!$ for integral $n, n \ge 0$.

15 The binomial theorem states that if *n* is an integer, $n \ge 1$, then $(x + a)^n = \sum_{r=0}^n {^nC_r} x^r a^{n-r}$. Use mathematical induction to prove this result.

17 Prove that the number of diagonals of a convex polygon with *n* vertices is $\frac{n(n-3)}{2}$ for $n \ge 4$.

- **23** (a) Write the binomial expansion of $(k+1)^p$ where p is a positive integer.
 - **(b)** If *p* is a prime number, identify which of the terms in the expansion do not have a factor of *p*.
 - (c) Prove by induction on n that if n is a positive integer and p is a prime number, then $n^p n$ is a multiple of p.