- 1 If $A = \pi r^2$ and $C = 2\pi r$, the expression for $\frac{dA}{dC}$ is given by:
 - **A** 2π

 $B = \frac{1}{2\pi}$

 \mathbf{C}

- $D = \frac{1}{r}$
- 2 If $x^2 + y^2 = 144$, find the value of $\frac{dy}{dt}$ when $\frac{dx}{dt} = 0.6$ and x = 5, given that x and y are both positive.

- **5** Given $V = \frac{1}{3} \pi r^2 h$ and $r = \frac{h}{4}$, answer the following questions.
 - (a) Find the expression for V in terms of h.
- **(b)** If $\frac{dV}{dt} = 0.6$, find the expression for $\frac{dh}{dt}$
- (c) Find the value of $\frac{dh}{dt}$ when r = 1.

8	Water is being poured at a constant rate of 3 cm ³ /s into an inverted right conical vessel whose apex angle is 90°. At what rate is the water level rising when the depth is π cm?
9	A lamp is 6 m directly above a straight footpath. A person 2 m tall walks along the footpath away from the light at a constant speed of 1 m/s. At what speed is the end of the person's shadow moving along the path? At what speed is the length of the shadow increasing?

RELATED RATES OF CHANGE							
12	A melting snowball is decreasing in volume at a constant rate of 8 cm ³ /min. If the melting snowball is always a perfect spherical shape, find the rate at which its radius is changing when the radius is 4 cm.						
4.4	The province of a simular coston is 20 cm. The realists is in according at a rate of 5 cm./s						
14	The perimeter of a circular sector is 20 cm. The radius is increasing at a rate of 5 cm/s. (a) At what rate is the angle of the sector changing when the radius length is 10 cm? (b) At what rate is the area changing when the radius is 10 cm?						
	(b) At what rate is the area changing when the radius is roth:						

16 Sand is poured into a heap in the shape of a right circular cone whose semi-vertex angle is α , where $\tan \alpha = \frac{3}{4}$. When the height of the cone is 16 cm, the height is increasing at a rate of 2 cm/min. At that instant, at what rate is the volume increasing?

When a certain gas expands at constant temperature, its pressure P and volume V are given by the relation $PV^{1.4} = k$, a constant. At a certain instant the pressure is $25 \, \text{g/cm}^2$ and the volume is $32 \, \text{cm}^3$. If the volume is increasing at the rate of $5 \, \text{cm}^3$ /s, at what rate is the pressure changing at that instant?

- 21 A straight railway track and a straight road intersect at right angles. At a given instant a car travelling at 40 km/h and a train travelling at 50 km/h are moving away from the intersection and are 40 km and 30 km from the intersection respectively.
 - (a) The car and train continue moving in straight lines without changing their speed. One hour later, at what rate is the distance between the car and the train changing?
 - **(b)** At what rate would the distance between the car and train be changing if they were both travelling towards the intersection?

A conical tank with a vertical axis has a semi-vertical angle of 45°. Water, initially at a depth of 5 metres, leaks
out through a hole at the bottom of the tank at a rate of $0.2\sqrt{h}$ m ³ /min when the depth is h metres. Find the
rate at which the depth is decreasing when the depth is 4 metres.

25 A loading chute is in the shape of a square pyramid with base length 10 m and depth 8 m. Liquid is poured in at the top at a rate of $4\,\mathrm{m}^3$ /min. At what rate is the level rising when the depth is $4\,\mathrm{m}^2$?

- 27 In triangle ABC, AB = 10 cm, AC = 12 cm and angle A is increasing at the rate of 0.1 radians per second. At what rate is:
 - (a) the area of $\triangle ABC$ increasing
- **(b)** the length of *BC* increasing, when angle *A* is $\frac{\pi}{3}$ radians?

- A spherical mothball evaporates at a rate proportional to its surface area so that its volume $V \, \text{cm}^3$ and radius r after t weeks are related by the equation $\frac{dV}{dt} = -4k\pi r^2$, where k is a positive constant.

 (a) Show that $\frac{dr}{dt} = -k$.

 - (b) If the initial radius of the mothball is 1 cm and the radius after 10 weeks is 0.5 cm, express r in terms of t.

- 30 (a) Show that the formula for the volume V of a right circular cone of base radius r and height h can be expressed as $V = \frac{1}{3}\pi h^3 \tan^2 \alpha$, where α is the semi-vertex angle.
 - (b) Water flows out through a hole at the vertex angle of an inverted cone, whose angle is 60°, at a rate equal to π times the square root of the depth of the water at any time. At what rate (in cm/s) would the water level be dropping when the depth is 9 cm?