2 Calculate the area of the region bounded by the curve $y = \sqrt{x}$, the *y*-axis and the line y = 3.

- **3** The area of the region bounded by the curve $y = \sqrt[3]{x}$ and the line y = 2 is given by:
 - $A \int_0^2 y \, dy$

- B $\int_{0}^{8} y \, dy$ C $\int_{0}^{2} y^{3} \, dy$ D $\int_{0}^{8} y^{3} \, dy$

4 Calculate the area of the region bounded by the curve $y = \frac{1}{x^2}$, the y-axis and the lines y = 1 and y = 9.

5 Calculate the area of the region bounded by the curve $y = x^2$ and the line y = 4.

- 6 (a) Show that the equation of the tangent to the parabola $y = x^2 + 1$ at the point where x = 2 is y = 4x 3.
 - (b) Hence find the area enclosed by the parabola, the tangent and the y-axis.

- 8 (a) Calculate the area of the region bounded by the parabolas y = x² and y = 4 x².
 (b) Calculate the area of the region bounded by the x-axis and the parabolas y = x² and y = 4 x².

