OTHER REPRESENTATIONS OF COMPLEX NUMBERS - EULER’S FORMULA

Euler’s formula
So far, we learnt that a complex number of modulus 1 can be represented as cosx + i sinx
In fact, this formula can be substituted with the term e%; this is known as Euler’s formula:
e* = cosx +isinx
Demonstration of Euler’s formula
Consider the function f(x) = cosx + i sinx which we can differentiate as if these were real numbers:

df(x) . .
=—sinx+icosx

dx
df (x

&) =i?sinx+icosx

dx
df (x

};Ec ) =i(cosx+isinx)
df (x

99 i pe
We know from the study of differential equations that the D.E. % =k f has for general solution:

flx)=Ae"

where A is a constant, that can be found using initial conditions.
Therefore the D.E. Z—i =i f has for general solution: f(x)=Ae™
Further, for x = 0, we have cos0 +isin0 = 1,ie. f(0) =1
Therefore Ael? =1 SO A=1 ie. f(x) =e%*

e =cosx +isinx (Euler’s formula)

Particularly, for x = 7, we obtain: em =coswm+isint=—-1+ix0=-1

So e™+1=0 which is known as “Euler’s identity”
Euler’s identity is considered to be one the most beautiful and famous equations as it links five fundamental
mathematical constants e, m, i, 1 (multiplicative identity) and 0 (additive identity), and also as it includes the
operations of addition, multiplication and exponentiation.

Euler’s formula e™* = cosx + isinx applies to complex numbers of modulo 1 (i.e. |z] = 1)
We have shown that complex numbers with modulo different of 1 (i.e. |z| # 1) can be written as:
z=r(cosf +isinf) or using Euler’s formula zZ = re“9

from there we can redemonstrate de Moivre’s theorem [i.e., if z = r(cos8 + isin@) then
z™ = r"(cos(n@) + i sin(nf))] which was otherwise demonstrated by induction in the previous lesson.

Demonstration of de Moivre’s theorem using Euler’s formula

Let z=1(cos@ +isinf) = re'
z" = (reie)n = r"(eie)n = r"em® = r"[cos(nB) + i sin(nd)]
So indeed: [r(cos @ + isinB)]™ = r™[cos(nf) + i sin(nh)]

Section 3 - Page 1 of 6
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Example 13
Write each complex number in both polar and Cartesian form.
o = 3xi =5xi _ i
@ e® (b) e* () e d)e® © " (M e °
Solution
IK
6 — ot 1. dus £=£ 1,
(@) e cos6+1s1n6 > +21
—ix
= = cos[ =¥ ) cos® —isin® = 1_V3;
(b) e cos( 3 )-Hsm( 3) cos3 xsm3 5
= 3n 3 _ n n 1,1 1
.3 ey X . I
(c) e* =cos 4 +isin=—- 4 cos 4 +ising 2+7;t 2( 1+1i)

Sz _ .
(d) e*® =cos(%)ﬂ'sin(%)=—cos£—isin£=—£—li

(e) e '™ =cos(—m)+isin(=r)=—cos0+isin0=—

in in
(f) e & =exeS =e(cos%+ism%)=e(§+%i)= eJ§+

Example 14
Write each complex number in the form re’®, giving any decimal answers correct to two decimal places.

(@) 3(cos2 +isin2) (b) -1+ i3 () 2+3i (d) 2(cos1.5-isinl.5) (e) -3-3i
Solution

(@) 3(cos2 +isin2) =3¢*

2ri
(b) —1+i~/§=2(—l+£i) 2(cos?‘”+isin2—”)=2e 3

20D 3

(c) 2+3i=J—(J— J_) J13(cos8 +isin@) where 8 = tan'(%)zo.%
=J_e0.981

(d) 2(cos1.5-isin1.5) = 2(cos(—1.5) + isin(-1.5)) = 2¢7 5
=3ri

(e) ‘3-3i=3(-1-i)=3\/5(—% T) 3\/_(cos( )+tsm( )) 3J2e
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Example 15
(@) Write z=1+i in the form re'.
(b) Hence find the following in both polar form and Cartesian form.
M 2 (i) 2 (i) 2" ) vz v
Solution

(a) z=1+i=~/§(%+%i) s/f(coszﬂsm ) s/_e

® @)z -(J_e4) -

o
u|5'

= 2(c057+tsm =)=2i

in 3mi
(ii) z3=(s/5e4) =2J2¢ ¢ —Zs/_(cos—ﬂsm ) 2«./_( J_ J_ ) —2+2i
This answer could also have been obtained usinng =2 xz=2i(1+i)=-2+2i

ir \4
(iii) z"=[sﬁe7) =4¢'" = 4(cosm+isinm)=—4

in

(iv) \/;=(~/§eT ]2 = ﬁe% =\/5(cos£+tsm

& 8) 4/2(0.9239+0.3827i) = 1.099 + 0.4204i
e T 1 & s A\\_1(1 1.)_1_1
-1 A A — . o — . .
V) 2 =| N2t | =—=e* =—(cos(—)+tsm(—))=—(———1)=———x
v) ( ) 3 3|8\ % 1)) B\GB R )22

Geometrical representation of products of complex numbers - Consolidation and Summary

Multiplication of a complex number z by a real number k
o arg(kz) =arg(k)+arg(z)

o ifk > Othen

arg(kz) = arg(z)

o ifk <Othenarg(k)=m and so arg(kz) =n+ arg(z) however

we need to subtract 2 to find the principal argument [which is between (—m) (not
inclusive) and 7 (inclusive) as noted before]

o |kz| = |k| X |z| there is a scaling factor of |k|. If k < 0 then the direction from the

origin O to the point representing kz is opposite to the direction from O to the point
representing z

Multiplication of a complex number z by i
o arg(iz) =arg(i) +arg(z) = g +arg(2)

o |iz| =li|X|z]| =1X%|z| = |z| asli| =1

Hence multiplication by i causes an anticlockwise rotation by = about the origin O, with no
change to modulus.
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Multiplication of a complex number z by ki where k is areal number.
e This combines the two cases above

e Rotate byg about the origin O, and then scale by a factor | k| remembering also to reverse the

direction if k is negative.

Multiplication of a complex number z; = r; ‘1 by another complex number z, = r, e
o arg(z, z,) = arg(z;) + arg(z,) (although arg(z,) + arg(z,) is one value of arg(z,z;),
but not necessarily the principal value; we may have to add or subtract a multiple of 2 to
obtain the principal argument)

o |zy z5| = |z1| X |25]

e So to multiply by r e?, we rotate by 6 anticlockwise about 0, and then we scale by a factor

Example 16
L =iz 3ix
Givenz, =2¢°,z,=3¢ 3 andz;=e *, find the polar form for each of the following.

@ zxz, (b) z,xz, (© z2xz @
, 2
(e) i—z (f) an_tzz (@) On the Argand diagram, plot z,, z, and z, X z,.
(h) On the Argand diagram, plot z,, z, and z—z
Solution
(@ z1Xz,= Ze%r X 3e# = 6e%+__§r = 6e¥ (b) z;Xz3= 3e% X es% = 3e¥+¥ = 3e%r

2ix iz in iz - ix_—ix iz
(© z’xz,=2%© x3e3 =123 * =12¢°(=12) (d) Z=26" -2, 5 =%e3(=%i)

Z, =
el
= ir_3i 13i 1i 2 , 2z — 0 3i
Z, _3e3 Sl L E e 2°Xz, _2°e® x3e3? _12e e
(e) 2= =3e =HEel = 3t () = Six =5 =12e
3 1 3 4 4
e e e
(@ - (h) Im
34 34
25
2 Z3 L85
Z
- - t i - -
- a4 =2 -1 @ 1 2 Re
-1 +
g
o Z
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Example 17

The Argand diagram at right shows the unit circle as well
as points representing the complex numbers z, and z,.
For (@) z=z, and (b) z=2z, mark points A, B, C, D, E,

F, G to represent z, 2z, -z, iz, —%iz, Zand (1+ s/§i)z.

Solution
A: Z is the reflection of z in the real axis

B: 2zis z scaled by a factor of 2

C: —zis z scaled by a factor of -1

(i.e. reflected back through O)

D: izis z rotated by % anticlockwise about O
E: -%iz is iz scaled by a factor of —%

Z* has a modulus that is (mod z)* and an argument that is 2 X argz

F;

G: 1+43i= 2cis%, so (1+ /3i)zis found by rotating anticlockwise
by % and then doubling the modulus.

(@ (b)

'
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Example 18
Let OABC be a square on an Argand diagram where O is the origin. The points A and C represent the
complex numbers z and iz respectively.

(a)
(b)

(©)

Find the complex number represented by B.

The square is now rotated anticlockwise 45° about O to form OA’B’C’. Find the complex numbers

represented by A”, B" and C".

E is the point of intersection of the diagonals of the square OA’B’C’. What complex number does

E represent?

Solution

(@) Brepresents z+ iz

(b)

()

represents the sum)

Method 1
A’ is formed by rotating A anticlockwise by
45° about O.

Hence A’ represents z X 1(cos45° + isin45°)
=-2(1+i)

M
B’ represents (z + iz) X 1(cos45° + isin45°)

=725(1+i)2=77’5x2i=\/2_iz

(completion of the parallelogram p Imf 3

Method 2

In a square, the length of the diagonal is /2 times the
length of a side. Also, the diagonals are inclined at 45°
to the sides. Hence, when A is rotated by 45° to A”, A”

is the point on the diagonal OB which is 71; from O.

Thus A’ represents the number A (z+iz2)
2 o 2
=-—=(1+1i)
V2
B’ is the point along the extension of OC such that OB’
=42Xx0C.
Hence B’ represents V2 xiz=2iz

By either method, similarly C is:
iz X 1(cos45° + isin45°) = 2= (=1+1i)
‘ )

The diagonals of a square bisect each other, so E is the midpoint of OB".

Hence E represents: %x 2iz
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