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Euler’s formula 

So far, we learnt that a complex number of modulus 1 can be represented as  cos 𝑥 + 𝑖 sin 𝑥 

In fact, this formula can be substituted with the term  𝑒௫; this is known as Euler’s formula: 

𝒆𝒊𝒙 = 𝐜𝐨𝐬 𝒙 + 𝒊 𝐬𝐢𝐧 𝒙 

Demonstration of Euler’s formula 

Consider the function 𝑓(𝑥) = 𝑐𝑜𝑠 𝑥 + 𝑖 𝑠𝑖𝑛 𝑥 which we can differentiate as if these were real numbers: 
𝑑𝑓(𝑥)

𝑑𝑥
= − 𝑠𝑖𝑛 𝑥 + 𝑖 𝑐𝑜𝑠 𝑥 

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑖ଶ 𝑠𝑖𝑛 𝑥 + 𝑖 𝑐𝑜𝑠 𝑥 

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑖 (𝑐𝑜𝑠 𝑥 + 𝑖 𝑠𝑖𝑛 𝑥) 

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑖 𝑓(𝑥) 

 

We know from the study of differential equations that the D.E.   
ௗ

ௗ௫
= 𝑘 𝑓   has for general solution: 

𝑓(𝑥) = 𝐴 𝑒௫ 

where 𝐴 is a constant, that can be found using initial conditions. 

 

Therefore the D.E.   
ௗ

ௗ௫
= 𝑖 𝑓   has for general solution:  𝑓(𝑥) = 𝐴 𝑒௫ 

 

Further, for 𝑥 = 0, we have  cos 0 + 𝑖 sin 0 = 1, i.e. 𝑓(0) = 1 

Therefore 𝐴 𝑒 = 1 so 𝐴 = 1  i.e. 𝑓(𝑥) = 𝑒௫ 

 

𝑒௫ = cos 𝑥 + 𝑖 sin 𝑥 (Euler’s formula) 
 

Particularly, for 𝑥 = 𝜋, we obtain: 𝑒గ = cos 𝜋 + 𝑖 sin 𝜋 = −1 + 𝑖 × 0 = −1 

So 𝑒గ + 1 = 0  which is known as “Euler’s identity” 
Euler’s identity is considered to be one the most beautiful and famous equations as it links five fundamental 

mathematical constants 𝑒, 𝜋, 𝑖, 1 (multiplicative identity) and 0 (additive identity), and also as it includes the 

operations of addition, multiplication and exponentiation. 

 
Euler’s formula  𝑒௫ = cos 𝑥 + 𝑖 sin 𝑥  applies to complex numbers of modulo 1 (i.e. |𝑧| = 1) 

We have shown that complex numbers with modulo different of 1 (i.e. |𝑧| ≠ 1) can be written as: 

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃)  or using Euler’s formula  𝑧 = 𝑟𝑒ఏ
 

 

from there we can redemonstrate de Moivre’s theorem [i.e., if  𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃)  then 

𝑧 = 𝑟(cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃))]  which was otherwise demonstrated by induction in the previous lesson. 

 

Demonstration of de Moivre’s theorem using Euler’s formula 

Let 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) = 𝑟𝑒ఏ 

𝑧 = ൫𝑟𝑒ఏ൯


= 𝑟൫𝑒ఏ൯


= 𝑟𝑒ఏ = 𝑟[cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)] 

So indeed: [𝑟(cos 𝜃 + 𝑖 sin 𝜃)] = 𝑟[cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)] 
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Geometrical representation of products of complex numbers – Consolidation and Summary 

Multiplication of a complex number  𝑧  by a real number  𝑘 

 𝑎𝑟𝑔(𝑘𝑧) = 𝑎𝑟𝑔(𝑘) + 𝑎𝑟𝑔(𝑧) 

o if 𝑘 > 0 then  𝑎𝑟𝑔(𝑘𝑧) = 𝑎𝑟𝑔(𝑧) 

o if 𝑘 < 0 then 𝑎𝑟𝑔(𝑘) = 𝜋 and so  𝑎𝑟𝑔(𝑘𝑧) = 𝜋 + 𝑎𝑟𝑔(𝑧)  however 

we need to subtract 2𝜋 to find the principal argument [which is between (−𝜋) (not 

inclusive) and 𝜋 (inclusive) as noted before] 

 |𝑘𝑧| = |𝑘| × |𝑧| there is a scaling factor of |𝑘|. If 𝑘 < 0 then the direction from the 

origin O to the point representing 𝑘𝑧 is opposite to the direction from O to the point 

representing 𝑧 

Multiplication of a complex number  𝑧  by  𝑖 

 𝑎𝑟𝑔(𝑖𝑧) = 𝑎𝑟𝑔(𝑖) + 𝑎𝑟𝑔(𝑧) =
గ

ଶ
+ 𝑎𝑟𝑔(𝑧) 

 |𝑖𝑧| = |𝑖| × |𝑧| = 1 × |𝑧| = |𝑧| as |𝑖| = 1 

Hence multiplication by  𝑖  causes an anticlockwise rotation by 
గ

ଶ
 about the origin O, with no 

change to modulus. 
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Multiplication of a complex number  𝑧  by  𝑘𝑖  where  𝑘  is a real number. 

 This combines the two cases above 

 Rotate by 
గ

ଶ
 about the origin O, and then scale by a factor |𝑘| remembering also to reverse the 

direction if 𝑘 is negative. 

Multiplication of a complex number  𝑧ଵ = 𝑟ଵ 𝑒ఏభ  by another complex number 𝑧ଶ = 𝑟ଶ 𝑒ఏమ 

 𝑎𝑟𝑔(𝑧ଵ 𝑧ଶ) = 𝑎𝑟𝑔(𝑧ଵ) + 𝑎𝑟𝑔(𝑧ଶ) (although 𝑎𝑟𝑔(𝑧ଵ) + 𝑎𝑟𝑔(𝑧ଶ) is one value of 𝑎𝑟𝑔(𝑧ଵ𝑧ଶ), 

but not necessarily the principal value; we may have to add or subtract a multiple of 2𝜋 to 

obtain the principal argument) 

 |𝑧ଵ 𝑧ଶ| = |𝑧ଵ| × |𝑧ଶ| 

 So to multiply by  𝑟 𝑒ఏ, we rotate by  𝜃  anticlockwise about O, and then we scale by a factor  𝑟 
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