Euler's formula

So far, we learnt that a complex number of modulus 1 can be represented as $\cos x + i \sin x$ In fact, this formula can be substituted with the term e^{ix} ; this is known as Euler's formula:

$$e^{ix} = \cos x + i \sin x$$

Demonstration of Euler's formula

Consider the function $f(x) = \cos x + i \sin x$ which we can differentiate as if these were real numbers: df(x)

 $\frac{df(x)}{dx} = -\sin x + i\cos x$ $\frac{df(x)}{dx} = i^{2}\sin x + i\cos x$ $\frac{df(x)}{dx} = i(\cos x + i\sin x)$ $\frac{df(x)}{dx} = if(x)$

We know from the study of differential equations that the D.E. $\frac{df}{dx} = k f$ has for general solution:

$$f(x) = A e^{k}$$

where *A* is a constant, that can be found using initial conditions.

Therefore the D.E. $\frac{df}{dx} = i f$ has for general solution: $f(x) = A e^{ix}$

Further, for x = 0, we have $\cos 0 + i \sin 0 = 1$, i.e. f(0) = 1Therefore $A e^{i0} = 1$ so A = 1 i.e. $f(x) = e^{ix}$

 $e^{ix} = \cos x + i \sin x$ (Euler's formula)

Particularly, for $x = \pi$, we obtain: $e^{i\pi} = \cos \pi + i \sin \pi = -1 + i \times 0 = -1$ So $e^{i\pi} + 1 = 0$ which is known as "*Euler's identity*"

Euler's identity is considered to be one the most beautiful and famous equations as it links five fundamental mathematical constants e, π , i, 1 (multiplicative identity) and 0 (additive identity), and also as it includes the operations of addition, multiplication and exponentiation.

Euler's formula $e^{ix} = \cos x + i \sin x$ applies to complex numbers of modulo 1 (i.e. |z| = 1) We have shown that complex numbers with modulo different of 1 (i.e. $|z| \neq 1$) can be written as:

 $z = r(\cos \theta + i \sin \theta)$ or using Euler's formula $Z = re^{i\theta}$

from there we can redemonstrate de Moivre's theorem [i.e., if $z = r(\cos \theta + i \sin \theta)$ then $z^n = r^n(\cos(n\theta) + i \sin(n\theta))$] which was otherwise demonstrated by induction in the previous lesson.

Demonstration of de Moivre's theorem using Euler's formula

Let $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$ $z^n = (re^{i\theta})^n = r^n (e^{i\theta})^n = r^n e^{in\theta} = r^n [\cos(n\theta) + i \sin(n\theta)]$ So indeed: $[r(\cos \theta + i \sin \theta)]^n = r^n [\cos(n\theta) + i \sin(n\theta)]$

Example 13

Write each complex number in both polar and Cartesian form.

(a)
$$e^{\frac{i\pi}{6}}$$
 (b) $e^{\frac{-i\pi}{3}}$ (c) $e^{\frac{3\pi i}{4}}$ (d) $e^{\frac{-5\pi i}{6}}$ (e) $e^{-i\pi}$ (f) $e^{1+\frac{i\pi}{6}}$
Solution
(a) $e^{\frac{i\pi}{6}} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$
(b) $e^{\frac{-i\pi}{3}} = \cos\left(\frac{-\pi}{3}\right) + i\sin\left(\frac{-\pi}{3}\right) = \cos\frac{\pi}{3} - i\sin\frac{\pi}{3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i$
(c) $e^{\frac{3\pi i}{4}} = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} = -\cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i = \frac{1}{\sqrt{2}}(-1+i)$
(d) $e^{\frac{-5\pi i}{6}} = \cos\left(\frac{-5\pi}{6}\right) + i\sin\left(\frac{-5\pi}{6}\right) = -\cos\frac{\pi}{6} - i\sin\frac{\pi}{6} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i$
(e) $e^{-i\pi} = \cos(-\pi) + i\sin(-\pi) = -\cos0 + i\sin0 = -1$
(f) $e^{1+\frac{i\pi}{6}} = e \times e^{\frac{i\pi}{6}} = e\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) = e\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \frac{e\sqrt{3}}{2} + \frac{e}{2}i$

Example 14

Write each complex number in the form $re^{i\theta}$, giving any decimal answers correct to two decimal places.

(a) $3(\cos 2 + i\sin 2)$ (b) $-1 + i\sqrt{3}$ (c) 2 + 3i (d) $2(\cos 1.5 - i\sin 1.5)$ (e) -3 - 3iSolution (a) $3(\cos 2 + i\sin 2) = 3e^{2i}$

(b)
$$-1 + i\sqrt{3} = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{\frac{2\pi i}{3}}$$

(c) $2 + 3i = \sqrt{13}\left(\frac{2}{\sqrt{13}} + \frac{3}{\sqrt{13}}i\right) = \sqrt{13}(\cos\theta + i\sin\theta)$ where $\theta = \tan^{-1}\left(\frac{3}{2}\right) \approx 0.98$
 $= \sqrt{13}e^{0.98i}$

(d)
$$2(\cos 1.5 - i\sin 1.5) = 2(\cos(-1.5) + i\sin(-1.5)) = 2e^{-1.5i}$$

(e)
$$-3-3i = 3(-1-i) = 3\sqrt{2}\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = 3\sqrt{2}\left(\cos\left(\frac{-3\pi}{4}\right) + i\sin\left(\frac{-3\pi}{4}\right)\right) = 3\sqrt{2}e^{\frac{-3\pi i}{4}}$$

Example 15

- (a) Write z = 1 + i in the form $re^{i\theta}$.
- (b) Hence find the following in both polar form and Cartesian form.

(i)
$$z^2$$
 (ii) z^3 (iii) z^4 (iv) \sqrt{z} (v) z^{-1}

Solution

(a)
$$z = 1 + i = \sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{\frac{i\pi}{4}}$$

(b) (i)
$$z^2 = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^2 = 2e^{\frac{i\pi}{2}} = 2(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = 2i$$

(ii) $z^3 = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^3 = 2\sqrt{2}e^{\frac{3\pi i}{4}} = 2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = 2\sqrt{2}\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) = -2 + 2i$

This answer could also have been obtained using $z^3 = z^2 \times z = 2i(1 + i) = -2 + 2i$.

(iii)
$$z^4 = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^4 = 4e^{i\pi} = 4\left(\cos\pi + i\sin\pi\right) = -4$$

(iv) $\sqrt{z} = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^{\frac{1}{2}} = \sqrt[4]{2}e^{\frac{i\pi}{8}} = \sqrt[4]{2}\left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right) = \sqrt[4]{2}(0.9239 + 0.3827i) = 1.099 + 0.4204i$
(v) $z^{-1} = \left(\sqrt{2}e^{\frac{i\pi}{4}}\right)^{-1} = \frac{1}{\sqrt{2}}e^{\frac{-i\pi}{4}} = \frac{1}{\sqrt{2}}\left(\cos\left(\frac{-\pi}{4}\right) + i\sin\left(\frac{-\pi}{4}\right)\right) = \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = \frac{1}{2} - \frac{1}{2}i$

Geometrical representation of products of complex numbers - Consolidation and Summary

Multiplication of a complex number z by a real number k

- arg(kz) = arg(k) + arg(z)
 - if k > 0 then arg(kz) = arg(z)
 - if k < 0 then $arg(k) = \pi$ and so $arg(kz) = \pi + arg(z)$ however we need to subtract 2π to find the principal argument [which is between $(-\pi)$ (not inclusive) and π (inclusive) as noted before]
- $|kz| = |k| \times |z|$ there is a scaling factor of |k|. If k < 0 then the direction from the origin 0 to the point representing kz is opposite to the direction from 0 to the point representing z

Multiplication of a complex number *z* by *i*

- $arg(iz) = arg(i) + arg(z) = \frac{\pi}{2} + arg(z)$
- $|iz| = |i| \times |z| = 1 \times |z| = |z|$ as |i| = 1

Hence multiplication by *i* causes an anticlockwise rotation by $\frac{\pi}{2}$ about the origin O, with no change to modulus.

OTHER REPRESENTATIONS OF COMPLEX NUMBERS - EULER'S FORMULA

Multiplication of a complex number *z* by *ki* where *k* is a real number.

- This combines the two cases above
- Rotate by $\frac{\pi}{2}$ about the origin 0, and then scale by a factor |k| remembering also to reverse the direction if k is negative.

<u>Multiplication of a complex number</u> $z_1 = r_1 e^{i\theta_1}$ by another complex number $z_2 = r_2 e^{i\theta_2}$

- $arg(z_1 z_2) = arg(z_1) + arg(z_2)$ (although $arg(z_1) + arg(z_2)$ is one value of $arg(z_1 z_2)$, but not necessarily the principal value; we may have to add or subtract a multiple of 2π to obtain the principal argument)
- $|z_1 z_2| = |z_1| \times |z_2|$
- So to multiply by $r e^{i\theta}$, we rotate by θ anticlockwise about 0, and then we scale by a factor r

Example 16

Given $z_1 = 2e^{\frac{i\pi}{6}}$, $z_2 = 3e^{\frac{-i\pi}{3}}$ and $z_3 = e^{\frac{3i\pi}{4}}$, find the polar form for each of the following. (a) $z_1 \times z_2$ (b) $z_2 \times z_3$ (c) $z_1^2 \times z_2$ (d) $\frac{z_1}{z_2}$ (e) $\frac{z_2}{z_3}$ (f) $\frac{z_1^2 \times z_2}{z_3}$ (g) On the Argand diagram, plot z_1, z_2 and $z_1 \times z_2$. (h) On the Argand diagram, plot z_2, z_3 and $\frac{z_2}{z_3}$. Solution **(b)** $z_2 \times z_3 = 3e^{\frac{-i\pi}{3}} \times e^{\frac{3i\pi}{4}} = 3e^{\frac{-i\pi}{3} + \frac{3i\pi}{4}} = 3e^{\frac{5i\pi}{12}}$ (a) $z_1 \times z_2 = 2e^{\frac{i\pi}{6}} \times 3e^{\frac{-i\pi}{3}} = 6e^{\frac{i\pi}{6} + \frac{-i\pi}{3}} = 6e^{\frac{-i\pi}{6}}$ (c) $z_1^2 \times z_2 = 2^2 e^{\frac{2i\pi}{6}} \times 3e^{\frac{-i\pi}{3}} = 12e^{\frac{i\pi}{3} + \frac{-i\pi}{3}} = 12e^0 (=12)$ (d) $\frac{z_1}{z_2} = \frac{2e^{\frac{i\pi}{6}}}{3e^{\frac{-i\pi}{3}}} = \frac{2}{3}e^{\frac{i\pi}{6} - \frac{-i\pi}{3}} = \frac{2}{3}e^{\frac{i\pi}{2}} \left(=\frac{2}{3}i\right)$ (e) $\frac{z_2}{z_3} = \frac{3e^{\frac{-i\pi}{3}}}{\frac{3i\pi}{4}} = 3e^{\frac{-i\pi}{3}\frac{3i\pi}{4}} = 3e^{\frac{-13i\pi}{12}} = 3e^{\frac{11i\pi}{12}}$ (f) $\frac{z_1^2 \times z_2}{z_3} = \frac{2^2e^{\frac{2i\pi}{6}} \times 3e^{\frac{-i\pi}{3}}}{e^{\frac{3i\pi}{4}}} = \frac{12e^0}{e^{\frac{3i\pi}{4}}} = 12e^{\frac{-3i\pi}{4}}$ (g) Im A (h) 3 3 2 2 2 3 4 5 0 -3 0 2 Re -1 -4 -1 -2 -3

OTHER REPRESENTATIONS OF COMPLEX NUMBERS - EULER'S FORMULA

Example 18

Let *OABC* be a square on an Argand diagram where *O* is the origin. The points *A* and *C* represent the complex numbers *z* and *iz* respectively.

- (a) Find the complex number represented by B.
- (b) The square is now rotated anticlockwise 45° about *O* to form *OA'B'C'*. Find the complex numbers represented by *A'*, *B'* and *C'*.
- (c) E is the point of intersection of the diagonals of the square OA'B'C'. What complex number does E represent?

Solution

(a) B represents z + iz (completion of the parallelogram represents the sum)

(b) Method 1

A' is formed by rotating *A* anticlockwise by 45° about *O*.

Hence A' represents $z \times 1(\cos 45^\circ + i \sin 45^\circ)$ = $\frac{z}{\sqrt{2}}(1+i)$

B' represents $(z + iz) \times 1(\cos 45^\circ + i \sin 45^\circ)$ = $\frac{z}{\sqrt{2}}(1 + i)^2 = \frac{z}{\sqrt{2}} \times 2i = \sqrt{2}iz$

Method 2

In a square, the length of the diagonal is $\sqrt{2}$ times the length of a side. Also, the diagonals are inclined at 45° to the sides. Hence, when *A* is rotated by 45° to *A'*, *A'* is the point on the diagonal *OB* which is $\frac{1}{\sqrt{2}}$ from *O*. Thus *A'* represents the number $\frac{1}{\sqrt{2}} \times (z + iz)$ $= \frac{z}{\sqrt{2}}(1+i)$ *B'* is the point along the extension of *OC* such that *OB'* $= \sqrt{2} \times OC$. Hence *B'* represents $\sqrt{2} \times iz = \sqrt{2}iz$

Hence B represents $\sqrt{2} \times iz = \sqrt{2} iz$ By either method, similarly C' is: $iz \times 1(\cos 45^\circ + i \sin 45^\circ) = \frac{z}{\sqrt{2}}(-1+i)$

(c) The diagonals of a square bisect each other, so *E* is the midpoint of *OB'*. Hence *E* represents: $\frac{1}{2} \times \sqrt{2} iz$