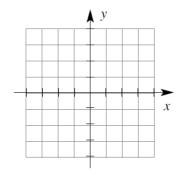
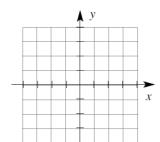

- **a** x 2y = 4 _____ **b** x y = 8 _____
- **c** 2x + y = 6 _____ **d** 2x y = 3 _____
- **e** 3x 4y = 12 **f** 3x y = 3

QUESTION **1** Find the x-intercept for each equation.

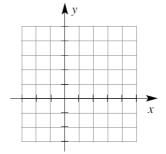

- **a** x + y = 2 _____ **b** x y = 4 _____
- **c** 2x + y = 6 **d** 2x y = 8
- **e** x 3y = 6 _____ **f** 2x 3y = 12 _____

QUESTION **3** Draw the graph of each equation, given the *x*-intercept and the *y*-intercept:

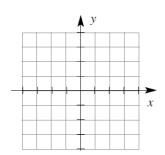
x-intercept = 3, y-intercept = 2



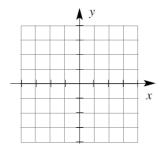
b x-intercept = -1, y-intercept = 3


y = -2x + 3

х	0	
у		0


x + y - 5 = 0

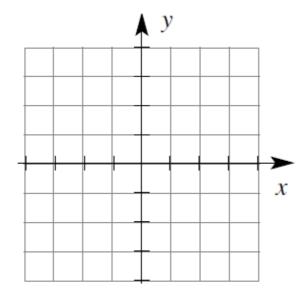
X	0	
у		0


y = 2x - 3

X	0	
у		0

d $y = \frac{4}{3}x - 1$

х	0	
у		0


2 Find the x- and y-intercepts of each line, then draw its graph on a number plane.

a
$$y = x - 3$$

b
$$y = x + 4$$

c
$$y = 2 - x$$

a
$$y = x - 3$$
 b $y = x + 4$ **c** $y = 2 - x$ **d** $y = 3x - 6$

Question 6: For the graphs of these rules, find the coordinates of y-intercept and the x-intercept:

a)
$$y = -2x - 4$$

b)
$$y = -x + 11$$

c)
$$y = 3x + 6$$