Solve each inequality and show the solution on a number line.

5
$$3x > 2x + 12$$

6
$$3(x+1) \ge 9$$

$$7 7x < 3(2x + 1)$$

$$8 - 3x + 2 < 29$$

(5)
$$3x > 2x + 12$$

$$\Rightarrow x > 12$$

$$7x(3(2x+1))$$

$$4=0$$
 $7x < 6x + 3$

$$8 - 3x + 2 < 29$$

$$x > -\frac{27}{3}$$

Solve each inequality

17
$$\frac{3x}{5} - \frac{2x}{3} > -2$$
 18 $\frac{7x}{3} < 3 + \frac{4x}{3}$ 19 $\frac{x-5}{2} > \frac{5x-3}{6}$ 20 $\frac{5x-3}{2} < x+2$

(17) $\frac{3x}{5} - \frac{2x}{3} > -2$ \Leftrightarrow $\frac{9x - 10x}{15} > -2$

$$\frac{3\chi - 2\chi > -2}{5} \xrightarrow{3} \frac{15}{15}$$

$$4 \Rightarrow -\frac{\chi}{15} > -2 \Rightarrow -\chi > -30$$

$$15 \Rightarrow \chi < 30$$

$$\frac{7x}{3} - \frac{4x}{3} < 3 \iff \frac{3x}{3} < 3 \iff x < 3$$

- 24 Solve simultaneously x-2>-2 and $x-3\leq 0$. Indicate whether each answer is correct or incorrect.
 - (a) $0 \le x \le 3$
- (b) $0 < x \le 3$ (c) $0 \le x \le 3$
- (d) x > 0 or $x \le 3$

 $\chi - 2 \rightarrow -2$ \Leftrightarrow $\chi > 0$

 $\chi - 3 \leqslant 0 \iff \chi \leqslant 3$

So : 0< x ≤ 3

26 If a certain number is divided by 2, the result is greater than 4 but less than 8. What values can this number take?

$$4<\frac{x}{2}<8$$

5=> 8< x < 16

27 The sum of two consecutive positive integers is no more than 35. What are the possible values of these integers?

$$n + (n+1) < 35$$

$$\Rightarrow$$
 $2n + 1 \leq 35$

So n can take all values less Thom or equal to 17

28 A committee consists of 3 more women than men. The total number of committee members is at least 7 but not more than 15. How many women could be on the committee?

$$W = M + 3 \qquad \infty \qquad M = W - 3$$

$$15 \geqslant W + M \geqslant 7 \qquad \text{or} \qquad 7 \leqslant W + M \leqslant 15$$

$$200 \qquad 7 \leqslant W + (W - 3) \leqslant 15$$

$$200 \qquad 7 \leqslant 2W - 3 \leqslant 15$$

$$200 \qquad 10 \leqslant 2W \leqslant 18$$

$$200 \qquad 10 \leqslant 2W \leqslant 9$$

30 The base length of an isosceles triangle is an integer (in cm) and is 4 cm less than the sum of the two equal sides. The perimeter is an integer (in cm) less than 80 cm. What are the possible base lengths?

$$2a - 4 = b$$

So there could be 5,6,7,8 or 9 women

$$2a - 4 = b \qquad \text{so} \quad a = \frac{b+4}{2}$$