- **1** *N* is decreasing according to the equation $\frac{dN}{dt} = -0.4(N-30)$. If N = 60 when t = 0:
 - (a) show that $N = 30 + Ae^{-0.4t}$ is a solution of this equation, where A is a constant
 - (b) calculate the value of N when t = 5.

- 3 The original temperature of a body is 120°C, the temperature of its surroundings is 50°C and the body cools to 70°C in 10 minutes. Assuming Newton's law of cooling, i.e. $\frac{dT}{dt} = -k(T-50)$ where T is the temperature of the body at time t, find:
 - (a) the temperature after 20 minutes
- (b) the time taken to cool to 60°C.

4 If N = 70 when t = 0, which expression is the correct solution to $\frac{dN}{dt} = -0.5(N - 20)$? **A** $N = 20 + 50e^{0.5t}$ **B** $N = 20 + 50e^{-0.5t}$ **C** $N = 20 - 50e^{0.5t}$ **D** $N = 20 - 50e^{-0.5t}$

A
$$N = 20 + 50e^{0.56}$$

B
$$N = 20 + 50e^{-0.5t}$$

C
$$N = 20 - 50e^{0.5t}$$

D
$$N = 20 - 50e^{-0.5t}$$

- **5** A metal bar has a temperature of 1230°C and cools to 1030°C in 10 minutes when the surrounding temperature is 30°C. Assume Newton's law of cooling, i.e. $\frac{dT}{dt} = -k(T-30)$ where T is the temperature of the body at time t.
 - (a) Show that $T = 30 + 1200e^{-kt}$ satisfies both Newton's law of cooling and the initial conditions.
 - (b) Find the temperature after 20 minutes. (c) Find the time taken to cool from 1230°C to 80°C.

- 7 A body whose temperature is 180°C is immersed in a liquid that is at 60°C. In 1 minute the temperature of the body has fallen to 120°C. Assume Newton's law of cooling, i.e. $\frac{dT}{dt} = -k(T-60)$ where T is the temperature of the body at time t.
 - (a) Show that $T = 60 + 120e^{-kt}$ satisfies both Newton's law of cooling and the initial conditions.
 - (b) At what time would the temperature of the body have fallen to 90°C?

8 A current of *i* amperes (or 'amps') flows through a coil of inductance *L* henrys and resistance *R* ohms. The current at any time is given by $i = \frac{E}{R} \left(1 - e^{\frac{-Rt}{L}} \right)$, where *E* is the electromotive force (i.e. the voltage) in volts. Show that $L \frac{di}{dt} + Ri = E$.

- **9** A vessel is filled at a variable rate so that the volume of liquid in the vessel at any time t is given by $V = A(1 e^{-kt})$.
 - (a) Show that $\frac{dV}{dt} = k(A V)$.
- (b) If a quarter of the vessel is filled in the first 5 minutes, what fraction is filled in the next 5 minutes?
- (c) Show that $\lim_{t\to\infty} V = A$.

- 10 A rectangular vessel is divided into two equal compartments by a vertical porous membrane. Liquid in one compartment, initially at a depth of 20 cm, flows into the other compartment, initially empty, at a rate proportional to the difference between the levels in each compartment. The differential equation for this process is $\frac{dx}{dt} = k(20-2x)$, where x cm is the depth of the liquid in one of the vessels at any time t minutes.
 - (a) Show that $x = 10(1 e^{-2kt})$. (b) If the level in the second compartment rises 2 cm in the first 5 minutes, at what time will the difference in levels be 2 cm?

- 11 In a certain chemical process, the amount y grams of a certain substance at time t hours is given by the formula $y = 3 + e^{-kt}$.
 - (a) Show that $\frac{dy}{dt} = -k(y-3)$.
 - (b) If initially y decreases at a rate of 0.08 grams per hour, find the value of k.
 - (c) Find the rate of change when y = 3.5. (d) What values can y take?