- 1 Use the factor theorem to show that:
 - (a) z-i is a factor of $z^3 + 2iz^2 + 3i$ (b) z-3 is a factor of $z^2 (5-i)z + 6 3i$ (c) z+2-i is a factor of $2z^3 + 3z^2 (5+2i)z 17 9i$

 - (d) $z-3+\sqrt{2}i$ is a factor of $2z^4-12z^3+23z^2-6z+11$.

- 2 Given $P(z) = z^3 z^2 z + a$, what is the value of a if $P\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 0$? **A** 2 **B** 1 **C** -2 **D** -1

3 Given $P(z) = z^4 - 2z^3 + az - 9$, find the value of *a* if $P(1 + \sqrt{2}i) = 0$.

- **6** Factorise each polynomial over the set of complex numbers:
 - (a) $z^2 + 2z + 3$
- **(b)** $2z^2 2z + 1$ **(c)** $2z^3 3z^2 + 2z 3$

- 8 Factorise $z^4 16$ over:
 - (a) the set of integers
- (b) the set of complex numbers.

- **10** Factorise $z^3 4z^2 + 9z 10$ over:
 - (a) the set of real numbers
- (b) the set of complex numbers.

- **12** When factorised over the set of complex numbers, $z^4 + 2z^2 + 1$ becomes:
 - A $(z^2-1)^2$
- B $(z-i)^2(z+1)^2$
- C $(z^2+1)^2$ D $(z-i)^2(z+i)^2$

- **13** Factorise $z^6 1$ over:
 - (a) the set of real numbers
- (b) the set of complex numbers.

- **14** Factorise $z^5 + 3z^4 z 3$ over:

 - (a) the set of real numbers (b) the set of complex numbers.