EOUATION OF A STRAIGHT LINE

- 1 Find the equation of the straight line with:
 - (a) gradient $\frac{3}{4}$, passing through (-6,5) (b) gradient $-\frac{1}{2}$, passing through (4,-3)

a)
$$y - 5 = \frac{3}{4}(x+6)$$
 (b) $y + 3 = -\frac{1}{2}(x-4)$
 $y = \frac{3}{4}x + \frac{19}{2}$ $\Rightarrow y = -\frac{1}{2}x - 1$

(a)
$$y - 5 = \frac{3}{4}(x + 6)$$
 (b) $y + 3 = -\frac{1}{2}(x - 4)$
(a) $y = \frac{3}{4}x + \frac{19}{2}$ (b) $y = -\frac{1}{2}x - 1$

- 2 Find the equation of the straight line passing through:
 - (a) (3,3) and (-4,-5)
- **(b)** (2,-8) and (7,2)

a)
$$M_a = \frac{-5-3}{-4-3} = \frac{-8}{-7} = \frac{8}{7}$$

a)
$$M_a = \frac{-5-3}{-4-3} = \frac{-8}{7} = \frac{8}{7}$$
 $y+5=\frac{8}{7}(x+4)$ $y=\frac{8}{7}x-\frac{3}{7}$

$$\int M_b = \frac{2+8}{7-2} = \frac{10}{5} = 2 \qquad y-2 = 2(x-7)$$

$$y = 2x$$

$$y-2 = 2(x-7)$$

 $y = 2x - 12$

- 3 Find the equation of the straight line passing through:
 - (a) (6,6) with an angle of inclination of 45°
 - (b) (-2,3) with an angle of inclination of 53°8′ $\left(\tan 53^{\circ}8' \approx \frac{4}{3}\right)$

$$y-6=1(x-6)$$
 \Leftrightarrow $y=x$

$$b) \quad M = \frac{4}{3}$$

$$M = \frac{4}{3}$$
 $y - 3 = \frac{4}{3}(x + 2)$

$$y = \frac{4}{3}x + \frac{8}{3} + 3$$

$$y = \frac{4}{3}x + \frac{17}{3}$$

EQUATION OF A STRAIGHT LINE

4 Find the equation of the straight line parallel to the x-axis and passing through the point (5, 2).

5 Find the equation of the straight line parallel to the y-axis and passing through the point (-2, -4).

$$x = -2$$

6 The equation of the straight line with x-intercept 2 and y-intercept -5 is:

A
$$2x - 5y - 10 = 0$$

B
$$5x - 2y - 10 = 0$$

C
$$2x - 5y + 10 = 0$$
 D $5x - 2y + 10 = 0$

D
$$5x - 2y + 10 = 0$$

$$M = \frac{5}{2}$$

$$y + 5 = \frac{5}{2}(x - 0)$$

$$4=3 \quad y = \frac{5}{2} x - 5$$

$$M = \frac{5}{2}$$
 $y + 5 = \frac{5}{2}(x - 0) \iff y = \frac{5}{2}x - 5$ $\implies 2y - 5x + 10 = 0$

8 Write each equation in the form y = mx + c and find the gradient of each line.

(a)
$$2x + 3y = 4$$

(b)
$$3x - 2y = 7$$

(c)
$$2y = 6 - 3x$$

(d)
$$5y - 2x = 8$$

a)
$$y = \frac{1}{3} \left[-2x + 4 \right] = -\frac{2}{3}x + 4/3$$

a)
$$y = \frac{1}{3} \left[-2x + 4 \right] = -\frac{2}{3}x + \frac{4}{3}$$
 b) $y = \frac{1}{2} \left[3x - 7 \right] = \frac{3}{2}x - \frac{7}{2}$

c)
$$y = -\frac{3}{2}x + 3$$

a)
$$y = \frac{1}{5}(2x + 8) = \frac{2}{5}x + \frac{8}{5}$$

9 Indicate whether each statement is correct or incorrect for the line 2x + 3y - 12 = 0.

(a)
$$m = -\frac{2}{3}$$
 True (b) x-intercept = 6 True (c) y-intercept = -4 NO (d) passes through (3,2) True

$$y = \frac{1}{3}(-2x + 12) = -\frac{2}{3}x + 4$$
 when $y = 0$, $x = 6$

$$9 = \frac{1}{3}\left(-2x + 12\right) = -\frac{2}{3}$$

when
$$y=0$$
, $x=6$

when
$$x=0$$
, $y=4$

(3,2) belongs to the line

- 11 Find the equation of the line containing the point (2, -3) that is:
 - (a) parallel to the line 3x + 2y 6 = 0

(b) perpendicular to the line
$$3x + 2y - 6 = 0$$

$$y = \frac{1}{2} \left[-3x + 6 \right] = -\frac{3}{2}x + 3$$

$$y = \frac{1}{2} \left[-3x + 6 \right] = -\frac{3}{2}x + 3$$
 $y = \frac{1}{2} \left[-3x + 6 \right] = -\frac{3}{2}x + 3$

$$y + 3 = -\frac{3}{2}(x - 2)$$

$$M_{\perp} = \frac{2}{3}$$

$$y = -\frac{3}{2}x$$

$$y + 3 = \frac{2}{3} \left(x - 2 \right)$$

$$y = \frac{2}{3}x - \frac{4}{3} - 3 = \frac{2}{3}x - \frac{13}{3}$$

EQUATION OF A STRAIGHT LINE

- 13 The coordinates of two points A and B are (0,-2) and (3,0) respectively. The x-coordinate of a point C on the line AB is 6. Find:
 - (a) the equation of AB
- (b) the angle of inclination of AB
- (c) the y-coordinate of C
- (d) the equation of the line through C that is perpendicular to AB.

a)
$$M = \frac{0+2}{3-0} = \frac{2}{3}$$
 $y+2 = \frac{2}{3}(x-0)$ so $y = \frac{2}{3}x-2$

$$y+2=\frac{2}{3}(\varkappa-0)$$

$$m y = \frac{2}{3}x - 2$$

b)
$$\tan \theta = \frac{2}{3}$$

b)
$$\tan \theta = \frac{2}{3}$$
 no $\theta \approx 33^{\circ}41'$

c)
$$y_c = \frac{2}{3} \times 6 - 2 = 4 - 2 = 2$$

$$y-2=-\frac{3}{2}(x-6)$$

$$y = -\frac{3}{2}x + \frac{18}{2} + 2$$

$$y = -\frac{3}{2}x + 11$$

14 Show that the line with equation 2x - y = 5 is parallel to the line joining the points (-1,5) and (1,9).

$$2x-y=5$$
 \Rightarrow $y=2x-5$ gradient 2

$$y = 2x - 5$$

$$M = \frac{9-5}{1+1} = \frac{4}{2} = 2$$