

QUESTION **1** State whether the gradient of each line is positive or negative.

QUESTION **3** Find the y-intercept and the gradient and hence sketch the graph of each line.

QUESTION **2** Find the gradient of any line parallel to:

a
$$y = 3x - 8$$

b $y = -\frac{1}{2}x + 7$
c $4x - y + 7 = 0$

- **5** Write each equation in the gradient–intercept form, then write down the gradient and *y*-intercept.
 - **a** 4x 2y + 3 = 0 **b** 2x 6y 1 = 0 **c** 3x + 4y + 12 = 0 **d** 5x + 3y 11 = 0

7 Choose the equation that best describes each of the lines below.

Question: Fill the table below with YES or NO (the first line has been done for you)

Line 1	Line 2	Are they parallel?	
y = 3x + 1	y=3x-2	YES (the gradients are the same)	
y = x + 1	y = 2x + 1		
y = 2x + 1	y = -2x + 1		
y = x + 1	y = -x + 1		
y = x + 1	y = x + 3		
y = 3x + 1	y = 3x		

<u>Question:</u> Fill the missing words in the sentences below:

Lines with the same gradient are _____. (parallel/not parallel)

If two lines intercept, it means that their gradients are ______. (equal/different)

QUESTION 4 A straight line y = mx + 8 passes through the point (-2, 2). Find the value of m.

FILL THE TABLE BELOW (the first line has been done for you)

Line 1	Gradient	Coordinates of the y-intercept	Coordinates of another point
y = 2x - 1	2	(0,-1)	(3,5)
y = x + 3			
y=3x-5			
$y = -\frac{1}{2}x + 1$			
$y = \frac{1}{3}x + 3$			
y = -x + 5			
y = x + 1			
$y = -\frac{1}{2}x$			
y = 2x + 3			

Which ones are parallel to each other?

Draw these lines on a Cartesian plane.

- **4** Write down the equation of a line that has:
 - **a** a gradient of 2 and a *y*-intercept of 3 **b** a gradient of -1 and *y*-intercept of 4

c a slope of 3 and cuts the y-axis at -2 **d** a slope of $-\frac{1}{2}$ and cuts the y-axis at -6

L

e a gradient of $\frac{2}{3}$ and passes through the origin