SKETCHING BASIC FUNCTIONS

You should be able to sketch simple linear functions from either the gradient-intercept form or the general form of the equation. You also need to be able to quickly and neatly sketch the power functions, such as $f(x) = x^2$, $f(x) = -x^2$, $f(x) = x^3$, $f(x) = x^4$, $f(x) = x^4$, $f(x) = x^4$, $f(x) = x^4$ and $f(x) = x^4$. You should already be familiar with many of these.

The following examples should also be graphed using graphing software. You may need to rewrite each equation in the form y = f(x).

Example 7

Sketch each straight line. State the gradient and both axis intercepts of each.

(a)
$$y = 2x + 1$$

(b)
$$2x + 3y - 6 = 0$$

(c)
$$y = 4 - x$$

Solution

(a)
$$y = 2x + 1$$

Find the value of y for three different values of x: (0,1), (2,5), (-1,-1) Plot these points on the number plane. Join them to obtain the line.

OR

From the form of the equation, recognise that the *y*-intercept is 1 and the gradient is 2.

Because the line passes through (0,1) it also passes through (1, 1+2=3) and (2, 3+2=5). This is because the gradient is 2, which means that as x increases by 1, y increases by 2. Plot and join the points.

Gradient = 2, x-intercept = -0.5, y-intercept = 1.

Find the value of y for three different values of x: (0,2), (3,0), (-3,4) Plot these points on the number plane. Join them to obtain the line.

OR

Rewrite the equation in the gradient-intercept form: $y = \frac{-2x}{3} + 2$ The gradient is a fraction, so this is not so convenient.

Rewrite the equation by putting the constant term on the RHS of the equation and dividing by 6: the equation becomes $\frac{x}{3} + \frac{y}{2} = 1$.

This shows that the *x*-intercept is 3 and the *y*-intercept is 2. Draw a line through these intercept points to obtain the graph.

Because the line falls as *x* increases, the gradient is negative.

Gradient =
$$-\frac{y\text{-intercept}}{x\text{-intercept}} = -\frac{2}{3}$$
, $x\text{-intercept} = 2$, $y\text{-intercept} = 3$.

From the equation:

gradient = -1, x-intercept = 4, y-intercept = 4.

Use this information to sketch the graph.

If you use this method, you should also find the coordinates of a third point to check that you haven't made a mistake, e.g. (2, 2).

SKETCHING BASIC FUNCTIONS

Example 8

Sketch each function, showing any intercepts on the coordinate axes.

(a)
$$f(x) = x^2$$

(b)
$$f(x) = -x^3$$

(c)
$$f(x) = \frac{1}{x}$$

Solution

(a) $f(x) = x^2$ is a type of curve called a parabola. Create a table of values and plot the points.

x	-2	-1	0	1	2
f(x)	4	1	0	1	4

Note that f(-x) = f(x). The curve is symmetrical about the *y*-axis. The curve passes through the point (0,0).

When x > 0, f(x) increases as x increases, so we say that f(x) is an increasing function for x > 0.

When x < 0, f(x) decreases as x increases, so we say that f(x) is a decreasing function for x < 0.

x		-3	-2	-1	0	1	2	3
f(x	:)	27	8	1	0	-1	-8	-27

Note that f(-x) = -f(x). The curve has rotational or point symmetry about the origin.

The curve passes through the point (0,0).

As x increases over the domain, the value of f(x) decreases, so f(x) is a decreasing function over its domain.

(c) $f(x) = \frac{1}{x}$ is a type of curve called a hyperbola. Create a table of values and plot the points.

x	-2	-1	-0.5	0	0.5	1	2
f(x)	-0.5	-1	-2	undefined	2	1	0.5

Note that f(-x) = -f(x). The curve has rotational or point symmetry about the origin. Also note that f(0) is undefined because $\frac{1}{0}$ does not exist.

The curve does not cut either axis.

As $x \to \pm \infty$, $f(x) \to 0$ and as $f(x) \to \pm \infty$, $x \to 0$.

The line f(x) = 0 is called a horizontal asymptote.

The line x = 0 is called a vertical asymptote.

When x < 0, f(x) decreases as x increases, so we say that f(x) is a decreasing function for x < 0.

When x > 0, f(x) decreases as x increases, so we say that f(x) is a decreasing function for x > 0.

Thus f(x) is a decreasing function over each part of its domain.

SKETCHING BASIC FUNCTIONS

Odd and even functions

An **odd function** has the property that f(-x) = -f(x). For example:

If
$$f(x) = x^3$$

then $f(-x) = (-x)^3$
 $= -x^3$
 $= -f(x)$

Hence $f(x) = x^3$ is an odd function.

Because f(x) and f(-x) are opposite in sign, the graph of f for $x \le 0$ can be obtained by rotating the graph for $x \ge 0$ through an angle of 180° about the origin.

An **even function** has the property that f(-x) = f(x). For example:

If
$$f(x) = x^2$$

then $f(-x) = (-x)^2$
 $= x^2$
 $= f(x)$

Hence $f(x) = x^2$ is an even function.

The graph of an even function is symmetrical about the *y*-axis. The graph for $x \le 0$ can be obtained by reflecting the graph for $x \ge 0$ in the *y*-axis.

Note that the statement f(-a) = f(a) implies that the function is defined at both x = a and x = -a. The function $f(x) = x^2$, x > 0 is **not** an even function, because f(-a) is not defined.

The properties of odd and even functions are useful when sketching the curves for these functions. After drawing a curve for $x \ge 0$, the other half of the curve can be drawn immediately from the odd or even symmetrical properties. Disappointingly, however, most functions are neither even nor odd.