- 2 Differentiate the following.

 - (a) $y = \tan^{-1} 5x$ (b) $y = 3 \tan^{-1} (1 x)$ (c) $y = \tan^{-1} x^2$ (d) $y = (\tan^{-1} x)^2$

2 Differentiate the following.

(i)
$$y = \sin^{-1}\left(\frac{x}{4}\right)$$

(i)
$$y = \sin^{-1}\left(\frac{x}{4}\right)$$
 (j) $y = 2\cos^{-1}\left(\frac{3x}{2}\right)$ (k) $y = \log_e(\sin^{-1}x)$ (l) $y = \log_e(\cos^{-1}2x)^2$

(k)
$$y = \log_e (\sin^{-1} x)$$

(1)
$$y = \log_e (\cos^{-1} 2x)^2$$

2 Differentiate the following.

(q)
$$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
 (r) $y = \cos^{-1}x + \cos^{-1}(-x)$ (s) $y = \tan x \tan^{-1}x$ (t) $y = \tan^{-1}\left(\sqrt{x^2-1}\right)$

(r)
$$y = \cos^{-1} x + \cos^{-1} (-x)$$

(s)
$$y = \tan x \tan^{-1} x$$

(t)
$$y = \tan^{-1} \left(\sqrt{x^2 - 1} \right)$$

5 If $y = \cos^{-1} x + \cos^{-1} (-x)$, find $\frac{dy}{dx}$ and show that $y = \pi$ for all x in the domain.

6 If $y = \sin^{-1} x + \sin^{-1} (-x)$, find $\frac{dy}{dx}$ and show that y = 0 for all x in the domain.

- 7 (a) Differentiate $x \tan^{-1} x$. (b) Hence find $\int \tan^{-1} x \, dx$.
 - (c) Use the substitution $u = \log_e x$ to evaluate $\int_1^e \frac{\tan^{-1}(\log_e x)}{x} dx$.

- 8 (a) State the domain of $f(x) = \tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right)$.
- (b) Find f'(x). (c) Find f(1) and f(-1). (d) Sketch the graph of y = f(x).