1 For each of the following pairs of vectors, find (i) $\underline{a} \propto \underline{b}$ (ii) the angle between \underline{a} and \underline{b} .

(c)
$$\underline{a} = 4\underline{i} - 5\underline{j} + 7\underline{k}, \ \underline{b} = 2\underline{i} + \underline{j} + 3\underline{k}$$
 (d) $\underline{a} = 6\underline{i} - \underline{j}, \ \underline{b} = 2\underline{j} - \underline{k}$

(d)
$$a = 6i - j, b = 2j - k$$

2 A, B, C, D are four points in space with respective coordinates (0, 0, 0), (1, 2, 3), (-3, 4, 6), (2, -6, -4).

- (a) the position vectors \$\overline{AB}\$ and \$\overline{CD}\$
 (c) the position vectors \$\overline{BC}\$ and \$\overline{AD}\$
 (e) the scalar projection of \$\overline{AB}\$ on \$\overline{CD}\$

- (b) the magnitude of the angle between \overline{AB} and \overline{CD} (d) the magnitude of the angle between \overline{BC} and \overline{AD} (f) the scalar projection of \overline{CD} on \overline{AB} .

- 5 If $\underline{a} = \underline{i} + \underline{j} + \underline{k}$, $\underline{b} = 2\underline{i} 3\underline{j} + 4\underline{k}$ and $\underline{c} = -2\underline{i} \underline{j} + 3\underline{k}$, find:
- (a) $(c a) \cdot b$ (b) $(a + b) \cdot c$ (c) the scalar projection of a onto b.

- **6** If a = 3i + 6j + 2k and b = -6i + 2j + 3k, find:
 - (a) a unit vector parallel to 2a + b
 - (b) a unit vector perpendicular to both \underline{a} and \underline{b} .

7 If $|\underline{a}| = |\underline{b}|$, simplify the following expressions.

(a)
$$(\underline{a} + \underline{b}) \cdot (\underline{a} - \underline{b})$$

(b)
$$(a + 2b) \cdot (2a - b)$$

- 11 If u = i + 2j 2k and v = 2i + 3j 6k, find: (a) \hat{u} (b) \hat{v}

- (c) a unit vector in the direction 2u v
- (d) (i) the vector projection of u parallel to v
 - (ii) the vector projections of \underline{u} perpendicular to \underline{v} .

13 Find the value of p for which $\underline{i} - 2p\underline{j} + 3\underline{k}$ and $p\underline{i} - 4\underline{j} + 3\underline{k}$ are perpendicular.

- **15** If a = (6, -2, 6) and b = (-6, -2, 1), find:
 - (a) a
- **(b)** the scalar projection of \underline{b} on to \underline{a}
- (c) $\left| a b \right|$
- (d) the magnitude of the projection of \underline{b} on to $\underline{a} \underline{b}$.

- 17 ABCDEF is a regular hexagon with centre O. If \$\overline{OA} = a\$ and \$\overline{OB} = b\$, express each of the following in terms of \$a\$ and \$b\$:
 (a) \$\overline{AB}\$ (b) \$\overline{BC}\$
- (c) \overrightarrow{CD}
- (d) \overrightarrow{BD}
- (e) FC
- (f) Prove that \overrightarrow{BD} and \overrightarrow{FC} are perpendicular.

18 Given $\underline{a} = 2\underline{i} - \underline{j} + 2\underline{k}$ and $\underline{b} = \underline{i} + 2\underline{j} - 2\underline{k}$, find two vectors \underline{c} and \underline{d} such that $\underline{a} = \underline{c} + \underline{d}$, \underline{c} is parallel to \underline{b} , \underline{d} is perpendicular to \underline{b} .

- 22 ABCD is a rectangle with vector \$\overline{AB} = 3i\$ and vector \$\overline{AD} = 2j\$.
 (a) Express the diagonal vectors \$\overline{AC}\$ and \$\overline{DB}\$ in terms of \$i\$ and \$j\$.
 (b) Calculate, to the nearest degree, the angle between the diagonals.

- **23** If \underline{u} and \underline{v} are vectors defined by $\underline{u} = \underline{i} + \underline{j} + \sqrt{2}\underline{k}$ and $\underline{v} = \underline{i} \underline{j} + \sqrt{2}\underline{k}$, find:
 - (a) a unit vector parallel to \underline{u}
 - (b) the angle between u and v
 - (c) the vector projection of y in the direction of y.