- 1 Given L_1 has equation x = 1 + 2t, y = 2 t, z = 3 + t and L_2 has equation x = 2 + s, y = -1 + 2s, z = 1 3s, then L_1 and L_2 :
 - A are parallel B intersect C are perpendicular D are skew

- 4 Given L_1 has equation x = 2 + 2t, y = 2 + t, z = 3 t and L_2 has equation x = 2 + s, y = -1 + 2s, z = -6 + 4s, then L_1 and L_2 :
 - A are parallel B intersect C are perpendicular D are skew

- **5** Line L_1 passes through the points (1, 2, -1) and (4, -1, 2) while line L_2 passes through the points (2, 6, -2) and (a, -1, 5), where $a \in R$.
 - Find the value(s) of *a*, if:
 - (a) L_1 is parallel to L_2 (b) L_1 is perpendicular to L_2 .

7 Find the coordinates of the points where the line $\underline{r} = (1 - \lambda)\underline{i} + (4 + 2\lambda)\underline{j} + (3 - \lambda)\underline{k}$ cuts the coordinate planes.

9. (a) Show that the line L₁ through the points (2, 1, -1) and (3, -2, 0) is parallel to the line L₂ through the points (-2, -3, 2) and (2, -15, 6).
(b) Show that the point (1, 4, -2) lies on the first line and the point (6, -27, 10) lies on the second line.

10 Show that the line through the points (2, 1, -1) and (3, -2, 3) is perpendicular to the line through the points (1, 3, 2) and (-1, 5, 4).

- **11 (a)** Find the equation of the line L_1 through the point (2, 1, -2) parallel to the vector y = i 2j + 3k.
 - (b) Find the equation of the line L_2 through the points (1, -2, 1) and (0, 2, -2).
 - (c) Determine whether (i) $L_1 \parallel L_2$, (ii) $L_1 \perp L_2$, (iii) L_1 and L_2 intersect.