1 Complete these product tables.

2 Write down the missing number.

a
$$2 \times (-3) = -6$$
, so $-6 \div (-3) = 2$

b
$$2 \times (-3) = -6$$
, so $-6 \div 2 = \boxed{-3}$

$$c - 16 \div 4 = -4$$
, so $-4 \times 4 = -16$

d
$$16 \div (-4) = -4$$
, so $-4 \times (-4) = 16$

3 Complete each sentence by inserting the missing word positive or negative.

- a The product (x) of two positive numbers is **positive**
- b The product (x) of two negative numbers is <u>positive</u>
- c The product (x) of two numbers with opposite signs is magative
- d The quotient (÷) of two positive numbers is <u>positive</u>
- e The quotient (÷) of two negative numbers is ___positive
- The quotient (+) of two numbers with opposite signs is regative

4 Calculate the answer to these products.

a
$$3 \times (-5) = -15$$
 b $1 \times (-10) = -10$ c $-3 \times 2 = -6$ d $-9 \times 6 = -54$

e
$$-8 \times (-4) = 32$$
 f $-2 \times (-14) = 28$ g $-12 \times (-12) = 144$ h $-11 \times 9 = -99$

i
$$-13 \times 3 = -39$$
 j $7 \times (-12) = -84$ k $-19 \times (-2) = 38$ l $-36 \times 3 = -108$

m
$$-6 \times (-11) = 66$$
 n $5 \times (-9) = -45$ o $-21 \times (-3) = 63$ p $-36 \times (-2) = 72$

5 Calculate the answer to these quotients.

a
$$14 \div (-7) = -2$$
 b $36 \div (-3) = -12$ c $-40 \div 20 = -2$ d $-100 \div 25 = -4$

e
$$-9 \div (-3) = 3$$
 f $-19 \div (-19) = 1$ g $-25 \div 5 = -5$ h $38 \div (-2) = -19$

i
$$84 \div (-12) = -7$$
 j $-108 \div 9 = -12$ k $-136 \div 2 = -68$ l $-1000 \div (-125) = 8$

m
$$-132 \div (-11) = 12$$
 n $-39 \div (-3) = 13$ o $78 \div (-6) = -13$ p $-156 \div (-12) = 13$

6 Work from left to right to find the answer. Check your answer using a calculator.

a
$$2 \times (-3) \times (-4) = 24$$
 b $-1 \times 5 \times (-3) = 15$ c $-10 \div 5 \times 2 = -4$

d
$$-15 \div (-3) \times 1 = 5$$
 e $-2 \times 7 \div (-14) = 1$ f $100 \div (-20) \times 2 = -10$ g $48 \div (-2) \times (-3) = 72$ h $-36 \times 2 \div (-4) = 18$ i $-125 \div 25 \div (-5) = 1$

g
$$48 \div (-2) \times (-3) = 72$$
 h $-36 \times 2 \div (-4) = 18$ i $-125 \div 25 \div (-5) = 1$

$$\mathbf{j} = -8 \div (-8) \div (-1) = -1$$
 k $46 \div (-2) \times (-3) \times (-1) = -691$ $-108 \div (-12) \div (-3) = -3$

7	Write	down	the	missing	number	in	these	calculations.
*		CALLANT		I I I I I I I I I I I I I I I I I I I	ELGETTE CA		***	A CELA MITTER CLIENT

a
$$5 \times | -7 | = -35$$

b
$$\boxed{4} \times (-2) = -8$$

c
$$16 \div \frac{-4}{-4} = -4$$

$$\mathbf{d} -32 \div \mathbf{8} = -4$$

d
$$-32 \div 8 = -4$$
 e $27 \div (-3) = -9$

$$1 - 140 \div 7 = -20$$

$$g -5000 \times 2 = -10000 \text{ h} -87 \times 3 = 261$$

$$-87 \times -3 = 261$$

$$i \quad 243 \div \boxed{-3} = -81$$

$$50 \div -1 = -50$$

$$k -92 \times 2 = 184$$

$$-800 \div 40 = -20$$

8 Remember that
$$\frac{9}{3}$$
 means $9 \div 3$. Use this knowledge to simplify each of the following.

$$a \frac{-12}{4} = -3$$

$$\frac{21}{-7} = -3$$

$$c = \frac{-40}{-5} = 8$$

a
$$\frac{-12}{4} = -3$$
 b $\frac{21}{-7} = -3$ c $\frac{-40}{-5} = 8$ d $\frac{-124}{-4} = 31$

$$e^{-\frac{15}{-5}} = 3$$

$$f = \frac{-100}{-20} = 5$$

$$\frac{-900}{30} = -30$$

e
$$\frac{-15}{-5} = 3$$
 f $\frac{-100}{-20} = 5$ g $\frac{-900}{30} = -30$ h $\frac{20\,000}{-200} = -100$

9 Given that
$$3^2 = 3 \times 3 = 9$$
 and $(-3)^2 = -3 \times (-3) = 9$, simplify each of the following.

$$(-2)^2 = 4$$

b
$$(-1)^2 = 1$$

$$(-9)^2 = 8$$

$$(-10)^2 = 100$$

$$e^{(-6)^2} = 36$$

$$(-8)^2 = 64$$

$$g (-3)^2 = 9$$

a
$$(-2)^2 = 4$$
 b $(-1)^2 = 1$ c $(-9)^2 = 81$ d $(-10)^2 = 100$
e $(-6)^2 = 36$ f $(-8)^2 = 64$ g $(-3)^2 = 9$ h $(-1.5)^2 = 2.25$

a 6 2 and 3, land 6 b
$$16(1,16)(-1,-16)$$

$$c = -5(1,-5)(-1,5)$$

10 List the different pairs of integers that multiply to give these numbers.

a 6 2 and 3, 1 and 6 b $16^{(1,16)}(-1,-16)$ c $-5^{(1,-5)}(-1,5)$ d $-24^{(1,-24)}(-1,24)(3,-8)(-3,8)$ -2 and -3, -land -6 (2,8)(-2,-8)11 Insert a multiplication or division sign between the numbers to make a true statement.

a
$$2 \times -3 = -6 = 1$$

b
$$-25 \div -5 \times 3 = 15$$

$$c -36 \times 2 \times -3 = 216$$

d
$$-19 \div -19 \times 15 = 15$$

There are two distinct pairs of numbers whose product is
$$-8$$
 and difference is 6. What are the two numbers $(-4,2)$ as $(-4)\times 2 = -8$ and $(2-(-4)=6)$ $(2)(4,-2)$ as $(4\times(-2)=-8)$ and $(4-(-2)=6)$ The quotient of two numbers is -11 and their difference is 36. What are the two numbers?

There are two distinct pairs to find. (33, -3) as 33 = -11 and 33 = -13 = 36 and (-33, 3) as $-33 \div 3 = -11$ and 3 = -13 = 36

and
$$(-33,3)$$
 as $-33 \div 3 = -11$ and $3 - (-33) = 36$

13 Given that
$$2^4$$
 means $2 \times 2 \times 2 \times 2$ and $(-2)^4 = -2 \times -2 \times -2 \times -2$

a Calculate:

$$(-2)^3 = -8$$

ii
$$(-2)^6 = 64$$

iii
$$(-3)^3 = -27$$

iv
$$(-3)^4 = 81$$

i
$$(-2)^3 = -8$$
 ii $(-2)^6 = 64$ iii $(-3)^3 = -27$ iv $(-3)^4 = 81$
b Which questions from part a give positive answers and why? ii and iv as the case is an

Which questions from part a give negative answers and why? even number of negative i and iii as there is an odd number of negative $a \times b$ is equivalent to ab, and $2 \times (-3)$ is equivalent to $-(2 \times 3)$. Use this information to simplify

these expressions.

$$a \quad a \times (-b) = -(a \times b)$$

$$b -a \times b = -(a \times b)$$

these expressions.
a
$$a \times (-b) = -(a \times b)$$
 b $-a \times b = -(a \times b)$ c $-a \times (-b) = -(-a \times b)$