SQUARE ROOT FUNCTIONSGiven the graph of y = f(x), it is often useful or necessary to draw the graph of $y = \sqrt{f(x)}$ and the graph of $y^2 = f(x)$.

To graph these functions, it is important to find out where f(x) < 0, as $\sqrt{f(x)}$ is not defined for these values of x (because the square root of a negative number is not a real number). Similarly, $y^2 = f(x)$ will not be defined for these values of x, because y^2 cannot be negative.

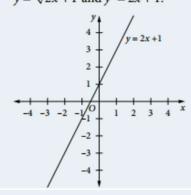
Remember that $\sqrt{0} = 0$ and $\sqrt{1} = 1$. Therefore, for 0 < f(x) < 1, $\sqrt{f(x)} > f(x)$; for f(x) > 1, $f(x) > \sqrt{f(x)}$.

Graphically this means that for 0 < f(x) < 1, the graph of $y = \sqrt{f(x)}$ is above y = f(x), and for f(x) > 1, the graph of $y = \sqrt{f(x)}$ is below y = f(x).

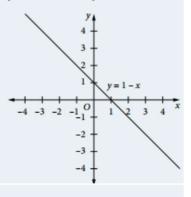
Example 4

In each part, use the graph of the given function to draw the graphs of $y = \sqrt{f(x)}$ and $y^2 = f(x)$.

- (a) Given y = x, draw $y = \sqrt{x}$ and $y^2 = x$.
 - -2
- (b) Given y = 2x + 1, draw $y = \sqrt{2x+1}$ and $y^2 = 2x+1$.

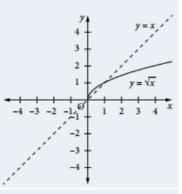


(c) Given y = 1 - x, draw $y = \sqrt{1 - x}$ and $y^2 = 1 - x$.

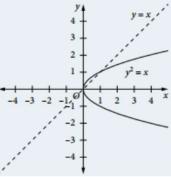


Solution

(a) The graph of $y = \sqrt{x}$ is undefined for x < 0. $x = \sqrt{x}$ at x = 0, 1. Graphs intersect at (0, 0) and (1, 1). For 0 < x < 1, the graph of $y = \sqrt{x}$ is above the graph of y = x.

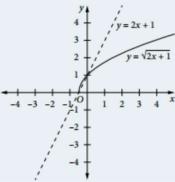


The graph of $y^2 = x$ is undefined for x < 0 as y^2 cannot be negative. It has two branches, $y = \sqrt{x}$ and $y = -\sqrt{x}$. y = x and $y^2 = x$ intersect at (0, 0) and (1, 1).



(b) The graph of $y = \sqrt{2x+1}$ is undefined for $x < -\frac{1}{2}$. $2x+1 = \sqrt{2x+1}$ at $x = -\frac{1}{2}$, 0. Graphs intersect at $\left(-\frac{1}{2}, 0\right)$ and (

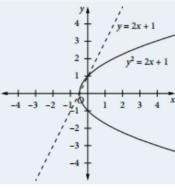
 $2x + 1 = \sqrt{2x + 1}$ at $x = -\frac{1}{2}$, 0. Graphs intersect at $\left(-\frac{1}{2}, 0\right)$ and (0, 1). For $-\frac{1}{2} < x < 0$, the graph of $y = \sqrt{2x + 1}$ is above the graph of y = 2x + 1.



The graph of $y^2 = 2x + 1$ is undefined for $x < -\frac{1}{2}$.

It has two branches, $y = \sqrt{2x+1}$ and $y = -\sqrt{2x+1}$.

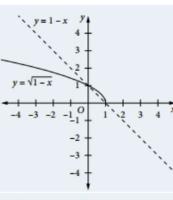
Graphs intersect at $\left(-\frac{1}{2}, 0\right)$ and (0, 1).



(c) The graph of $y = \sqrt{1-x}$ is undefined for x > 1.

 $1 - x = \sqrt{1 - x}$ at x = 0, 1. Graphs intersect at (0, 1) and (1, 0).

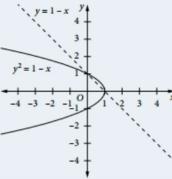
For 0 < x < 1, the graph of $y = \sqrt{1 - x}$ is above the graph of y = 1 - x.



The graph of $y^2 = 1 - x$ is undefined for x > 1.

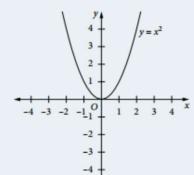
It has two branches, $y = \sqrt{1-x}$ and $y = -\sqrt{1-x}$.

Graphs intersect at (0, 1) and (1, 0).



Example 5

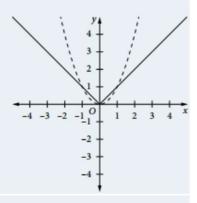
- (a) Given $y = x^2$, draw $y = \sqrt{x^2}$ and $y^2 = x^2$.
- **(b)** Given $y = (x 2)^2$, draw $y = \sqrt{(x-2)^2}$ and $y^2 = (x-2)^2$. $y = \sqrt{(x+2)(1-x)}$ and
 - (c) Given y = (x + 2)(1 x), draw $y^2 = (x+2)(1-x)$.



- $y = (x-2)^2$
- y = (x+2)(1-x)

Solution

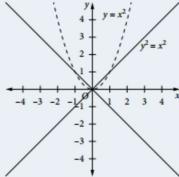
(a) The graph of $y = \sqrt{x^2}$ is defined for all x. The function is never negative. The graphs intersect at (-1, 1), (0, 0) and (1, 1). The resulting graph is the same as y = |x|.



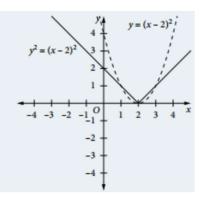
The graph of $y^2 = x^2$ is defined for all x.

The graphs intersect at (-1, 1), (0, 0) and (1, 1).

The resulting graph is the same as the graph of $y = \pm x$.



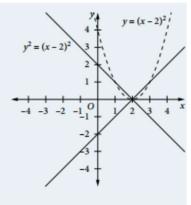
(b) The graph of $y = \sqrt{(x-2)^2}$ is defined for all x. The function is never negative. The graphs intersect at (1, 1), (2, 0) and (3, 1). The resulting graph is the same as the graph of y = |x - 2|.



The graph of $y^2 = (x-2)^2$ is defined for all x.

The graphs intersect at (1, 1), (2, 0) and (3, 1).

The resulting graph is the same as the graph of $y = \pm (x - 2)$.

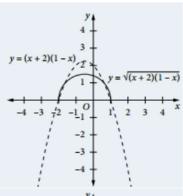


(c) The graph of $y = \sqrt{(x+2)(1-x)}$ is undefined for x < -2 and x > 1.

The maximum value of (x + 2)(1 - x) is $\frac{9}{4}$ and occurs at $x = -\frac{1}{2}$.

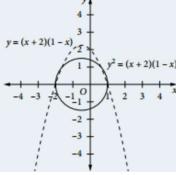
The greatest value of $\sqrt{(x+2)(1-x)}$ is $\frac{3}{2}$ and occurs at $x=-\frac{1}{2}$. -2 < x < 1: $0 \le y \le 1.5$.

Further algebraic investigation shows that the graph is a semicircle in the upper half plane, centre (-0.5, 0), radius 1.5.



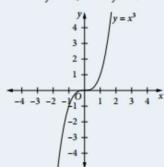
The graph of $y^2 = (x + 2)(1 - x)$ is undefined for x < -2 and x > 1. -2 < x < 1: $-1.5 \le y \le 1.5$.

Further algebraic investigation shows that the graph is a circle, centre (-0.5, 0), radius 1.5.

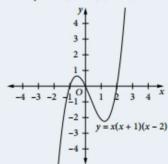


Example 6

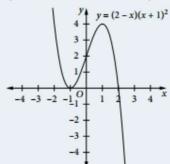
(a) Given $y = x^3$, draw $y = \sqrt{x^3}$ and $y^2 = x^3$.



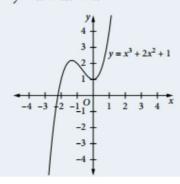
(b) Given y = x(x+1)(x-2), draw $y = \sqrt{x(x+1)(x-2)}$ and $y^2 = x(x+1)(x-2)$.



(c) Given $y = (2 - x)(x + 1)^2$, draw $y = \sqrt{(2 - x)(x + 1)^2}$ and $y^2 = (2 - x)(x + 1)^2$.

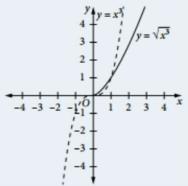


(d) Given $y = x^3 + 2x^2 + 1$, draw $y = \sqrt{x^3 + 2x^2 + 1}$ and $y^2 = x^3 + 2x^2 + 1$.



Solution

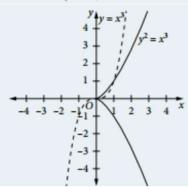
(a) The graph of $y = \sqrt{x^3}$ is undefined for x < 0. $x^3 = \sqrt{x^3}$ at x = 0, 1. The curves intersect at (0, 0) and (1, 1).



The graph of $y^2 = x^3$ is undefined for x < 0.

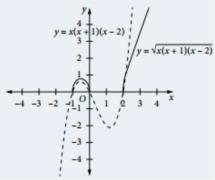
The curves intersect at (0,0) and (1,1).

 $y^2 = x^3$ is equivalent to $y = \pm \sqrt{x^3}$.

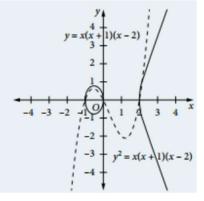


(b) The graph of $y = \sqrt{x(x+1)(x-2)}$ is undefined for x < -1, 1 < x < 2. The graphs meet at (-1, 0), (0, 0), (2, 0).

For x > 2, $\sqrt{x(x+1)(x-2)} > x(x+1)(x-2)$ until the RHS becomes greater than 1.



The graph of $y^2 = x(x+1)(x-2)$ is undefined for x < -1, 1 < x < 2. The graphs meet at (-1, 0), (0, 0), (2, 0).



(c) The graph of $y = \sqrt{(2-x)(x+1)^2}$ is undefined for x > 2. The maximum turning point of $y = (2-x)(x+1)^2$ is (1, 4), so the maximum turning point of $y = \sqrt{(2-x)(x+1)^2}$ is (1, 2). (-1, 0) is not called a turning point of $y = \sqrt{(2-x)(x+1)^2}$ because at this point the curve changes sharply, not smoothly. Instead this point is called a **cusp**.

 $y = \sqrt{(2-x)(x+1)^2}$ $y = (2-x)(x+1)^2$ $y = (2-x)(x+1)^2$ y = (2-x

The graph of $y^2 = (2 - x)(x + 1)^2$ is undefined for x > 2. The maximum turning point of $y = (2 - x)(x + 1)^2$ is (1, 4), so the maximum turning point of $y^2 = (2 - x)(x + 1)^2$ is (1, 2) and the minimum turning point is (1, -2).

