TRIGONOMETRIC EQUATIONS INVOLVING ANGLE FORMULAE

Example 23

Solve the equation $\sin 2x = 3\cos x$, $0 \le x \le 2\pi$.

Solution

As $\sin 2x = 2 \sin x \cos x$: $2 \sin x \cos x = 3 \cos x$

$$\cos x \left(2\sin x - 3\right) = 0$$

$$\therefore \cos x = 0 \text{ or } \sin x = 1.5$$

Because $|\sin x| \le 1$, the only solution is $\cos x = 0$.

$$\therefore x = \frac{\pi}{2}, \frac{3\pi}{2}$$

Example 24

Solve the equation $\cos 2x \cos \alpha - \sin 2x \sin \alpha = -0.5$, $0 \le x \le 2\pi$, where $\alpha = \frac{\pi}{6}$.

Use the expansion of $\cos(A + B)$ to simplify the LHS:

 $\cos 2x \cos \alpha - \sin 2x \sin \alpha = \cos (2x + \alpha)$

Hence, as
$$\alpha = \frac{\pi}{6}$$
: $\cos\left(2x + \frac{\pi}{6}\right) = -0.5$

$$2x + \frac{\pi}{6} = \frac{2\pi}{3}, \frac{4\pi}{3}, 2\pi + \frac{2\pi}{3}, 2\pi + \frac{4\pi}{3}$$

$$2x = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{5\pi}{2}, \frac{19\pi}{6}$$

$$x = \frac{\pi}{4}, \frac{7\pi}{12}, \frac{5\pi}{4}, \frac{19\pi}{12}$$

Example 25

Solve for $0 \le \theta \le \pi$, the equation $\sin 2\theta \cos \theta = \sin 3\theta \cos 2\theta$.

Solution

 $\sin 2\theta \cos \theta = \sin 3\theta \cos 2\theta$.

Convert each product to a sum: $\frac{1}{2}(\sin(2\theta + \theta) + \sin(2\theta - \theta)) = \frac{1}{2}(\sin(3\theta + 2\theta) + \sin(3\theta - 2\theta))$

 $\sin 3\theta + \sin \theta = \sin 5\theta + \sin \theta$

Simplify:

 $\sin 3\theta = \sin 5\theta$

Rewrite:

 $\sin 5\theta = \sin 3\theta$

Solve: $5\theta = 3\theta$, $\pi - 3\theta$, $2\pi + 3\theta$, $3\pi - 3\theta$, $4\pi + 3\theta$, $5\pi - 3\theta$, $6\pi + 3\theta$, $7\pi - 3\theta$.

 $0 \le \theta \le \pi$: $2\theta = 0, 2\pi, 4\pi, ...$

$$\theta = 0, \pi$$

and $8\theta = \pi$, 3π , 5π , 7π .

$$\theta = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$$

 $\theta = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}.$ The complete solution is: $\theta = 0, \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \pi$.

TRIGONOMETRIC EQUATIONS INVOLVING ANGLE FORMULAE

Example 26

Solve for $0 \le \theta \le \pi$, the equation $\cos 3\theta + \cos \theta = \cos 2\theta$.

Solution

 $\cos 3\theta + \cos \theta = \cos 2\theta$

Convert the LHS to a product: $2\cos\left(\frac{3\theta+\theta}{2}\right)\cos\left(\frac{3\theta-\theta}{2}\right) = \cos 2\theta$

$$2\cos 2\theta\cos\theta = \cos 2\theta$$

Rearrange:
$$\cos 2\theta (2\cos \theta - 1) = 0$$

Solve:
$$\cos 2\theta = 0$$
 or $\cos \theta = \frac{1}{2}$

$$2\theta = \frac{\pi}{2}$$
, $\frac{3\pi}{2}$ or $\theta = \frac{\pi}{3}$.

The complete solution is: $\theta = \frac{\pi}{4}, \frac{\pi}{3}, \frac{3\pi}{4}$.