
- 1 A particle is moving in a straight line, so that its displacement x metres from a fixed point O on the line at time t seconds ($t \ge 0$) is given by $x = 2t^3 5t^2 4t$.
 - (a) Find the velocity and acceleration of the particle at any time t.
 - (b) Find the initial velocity and acceleration.
 - (c) When is the particle at rest?
 - (d) When is the acceleration zero? What is the velocity and displacement at this time?

4 The graph shows the displacement *x* of a particle moving along a straight line as a function of time *t*.

Which statement best describes the motion of the particle at the point P?

- A The velocity is negative and the acceleration is positive.
- B The velocity is negative and the acceleration is negative.
- **C** The velocity is positive and the acceleration is positive.
- D The velocity is positive and the acceleration is negative.

- 3 A particle moves in a straight line. Its velocity $v \text{ ms}^{-1}$ at time t is given by $v = 5 \frac{10}{t+1}$.
 - (a) Find the initial velocity.
 - (b) Find the acceleration of the particle when the particle is at rest.
 - (c) Sketch the graph of v for $t \ge 0$, showing any intercepts and asymptotes.

- 5 The displacement of a particle moving along the x-axis is given by $x = 2t \frac{1}{t+1}$, where x is the displacement from the origin in metres, t is in seconds and $t \ge 0$.
 - (a) Find the expression for the velocity v and draw the graph of v against t.
 - (b) What value does the velocity approach as t increases indefinitely?
 - (c) Find the expression for the acceleration a and draw the graph of a against t.
 - (d) Show that the acceleration of the particle is always negative.

6 A particle is moving along the x-axis. The displacement of the particle at time t is x metres. At a certain time, $v = -4 \text{ m s}^{-1}$ and $a = 3 \text{ m s}^{-2}$.

Which statement describes the motion of the particle at that time?

- A The particle is moving to the left with decreasing speed.
- B The particle is moving to the left with increasing speed.
- C The particle is moving to the right with decreasing speed.
- D The particle is moving to the right with increasing speed.

- **7** A driver takes 3 hours to travel the distance between two points *A* and *B* on a country road. At time *t* hours after passing *A*, the driver's speed $v \text{ km h}^{-1}$ is given by $v = 60 + 40e^{-t}$.
 - (a) Calculate the speeds when the driver passes points A and B.
 - (b) Write the acceleration in terms of: (i) t (ii) v
 - (c) Sketch the velocity-time curve and comment on the motion for large values of t.

- 8 A particle moves in a straight line so that its displacement x from a fixed origin at any time t is given by $x(t) = 2(1 - e^{-t})$.
 - (a) Find x(0), $\dot{x}(0)$ and $\ddot{x}(0)$.
- **(b)** Sketch the graph of x(t).
- (c) Find t when x(t) = 1.

9 A body starts from O and moves in a straight line. At any time t its velocity is given by $\dot{x} = 6t - 4$. Indicate whether each statement below is correct or incorrect.

(a)
$$x = 3t^2 - 4t + C$$
 (b) $x = 3t^2 - 4t$ (c) $\ddot{x} = 3t^2 - 4t$ (d) $\ddot{x} = 6$

(b)
$$x = 3t^2 - 4t$$

(c)
$$\ddot{x} = 3t^2 - 4t$$

(d)
$$\ddot{x} = 6$$

VELOCITY AND ACCELERATION AS RATES OF CHANGE 10 A body starts from O and moves in a straight line. At any time t, its velocity is $t^2 - 4t^3$. Find, in terms of t: (b) the acceleration. (a) the displacement x 11 The velocity $v \, \text{m s}^{-1}$ at time t seconds ($t \ge 0$) of a body moving in a straight line is given by $v = 6t^2 + 6t - 12$. Find the acceleration at any time t.

- 12 A particle is projected vertically upwards from a point O with an velocity of $25 \,\mathrm{m\,s^{-1}}$ and a downward acceleration of $10 \,\mathrm{m\,s^{-2}}$.
 - (a) Find its velocity and height above O at any time t.
 - (b) What maximum height does the particle reach?
 - (c) At what time has its velocity been reduced to half the velocity of projection?

- 13 A body is projected vertically upwards with an initial velocity of $30 \, \mathrm{m \, s^{-1}}$. It rises with a deceleration of $10 \, \mathrm{m \, s^{-2}}$.
 - (a) Find its velocity at any time t.
- **(b)** Find its height *h* m above the point of projection at any time *t*.
- (c) Find the greatest height reached.
- (d) Find the time taken to return to the point of projection.