2 Find the following.

(a)
$$\int \frac{dx}{\sqrt{16-x^2}}$$

(b)
$$\int \frac{3}{9+x^2} dx$$

(c)
$$\int \frac{dx}{\sqrt{1-x^2}}$$

(b)
$$\int \frac{3}{9+x^2} dx$$
 (c) $\int \frac{dx}{\sqrt{1-x^2}}$ (d) $\int \frac{-1}{\sqrt{5-x^2}} dx$

2 Find (i)
$$\int \frac{-1}{\sqrt{6-x^2}} dx$$
 (j) $\int \frac{dx}{\sqrt{1-4x^2}}$ (k) $\int \frac{dx}{1+9x^2}$ (l) $\int \frac{dx}{9+16x^2}$

$$0) \quad \int \frac{dx}{\sqrt{1-4x^2}}$$

(k)
$$\int \frac{dx}{1+9x^2}$$

(I)
$$\int \frac{dx}{9+16x^2}$$

2 Find (q)
$$\int \frac{dx}{4+(x+5)^2} (\text{let } u = x+5)$$
 (r) $\int \frac{dx}{\sqrt{2-(x-3)^2}} (\text{let } u = x-3)$

3 Evaluate (k)
$$\int_0^1 \left(\frac{1}{1+x^2} + \frac{x}{1+x^2}\right) dx$$
 (m) $\int_{-4}^4 \frac{dx}{x^2+16}$ (q) $\int_{-1}^1 \frac{dx}{\sqrt{2-x^2}}$

(m)
$$\int_{-4}^{4} \frac{dx}{x^2 + 16}$$

(q)
$$\int_{-1}^{1} \frac{dx}{\sqrt{2-x^2}}$$

6 On the same axes, sketch the graph of $y = 2\sin\frac{\pi x}{4}$ for $0 \le x \le 2$ and $x = 2\sin\frac{\pi y}{4}$ for $0 \le y \le 2$. Find the area of the region enclosed by the curves.

7 The curve $y = \frac{1}{\sqrt{1+x^2}}$ is rotated about the *x*-axis. Find the volume of the solid enclosed between $x = \frac{1}{\sqrt{3}}$ and $x = \sqrt{3}$.

9 Without evaluating the integral, explain why $\int_{-1}^{1} \tan^{-1} x \, dx$ is equal to zero.

12 Differentiate $x \cos^{-1} x - \sqrt{1 - x^2}$ and use the result to evaluate $\int_0^1 \cos^{-1} x \, dx$.

- **14** (a) Prove that $\frac{d}{dx}(x\sin^{-1}x) = \sin^{-1}x + \frac{x}{\sqrt{1-x^2}}$.
 - **(b)** Hence show that $\int_0^{\frac{1}{2}} \sin^{-1} x \, dx = \frac{\pi}{12} + \frac{\sqrt{3}}{2} 1.$ (You may use the substitution $u = 1 x^2$.)