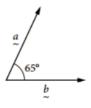
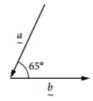
1 Consider the vectors \underline{a} , \underline{b} , \underline{c} , \underline{d} and \underline{e} as shown.

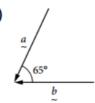
a b 2 30°


Find the angle between the following pairs of vectors.

- (a) a and b
- **(b)** a and c
- (c) a and d
- (d) \underline{a} and \underline{e}
- (e) b and c

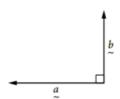

- (f) b and d
- (g) b and e
- (h) c and d
- (i) c and e
- (j) d and e

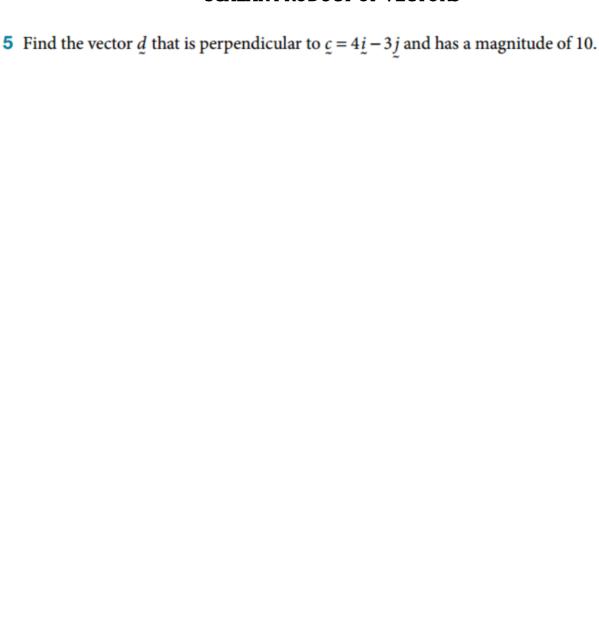
2 Given $|\underline{a}| = 8$ and $|\underline{b}| = 7$, find the scalar product of \underline{a} and \underline{b} for each of the following, correct to two decimal places where necessary.


(a)

(b)

(c)


(d)


(e)

(f)

4 Show that the vectors $\underline{a} = 3\underline{i} + 7\underline{j}$ and $\underline{b} = 7\underline{i} - 3\underline{j}$ are perpendicular.

6 If the vectors e = 7i - 5j and f = xi - 3j are perpendicular, find the value of x.

7 If
$$a = -6i + 2j$$
, find:

(c)
$$\underline{a} \bullet \underline{a}$$
 in terms of $|\underline{a}|$

8 For any vector \underline{a} , find the value of each of the following, in terms of $|\underline{a}|$ where necessary.

(c)
$$a \bullet (-a)$$

10 Find the angle, correct to the nearest degree, between each of the following pairs of vectors \underline{a} and \underline{b} :

(a)
$$a = 3i + 2j$$
 and $b = 3i + 5j$

(a)
$$a = 3i + 2j$$
 and $b = 3i + 5j$ (b) $a = -3i + 2j$ and $b = 5i + 6j$ (c) $a = 4i - j$ and $b = 3i + 4j$

(c)
$$a = 4i - j$$
 and $b = 3i + 4j$

- 11 Which vector is perpendicular to f = -5i + 2j with magnitude 12?
- A $a = \frac{12}{\sqrt{29}} \left(5i 2j \right)$ B $b = \frac{12}{\sqrt{29}} \left(2i + 5j \right)$ C $c = \frac{12}{\sqrt{29}} \left(2i 5j \right)$ D $d = \frac{12}{\sqrt{29}} \left(-2i + 5j \right)$

- 12 Vectors $\underline{a} = x\underline{i} 2\underline{j}$ and $\underline{b} = -6\underline{i} + y\underline{j}$ are perpendicular. What are possible values of x and y?
- **A** x = 1 and y = 3 **B** x = 1 and y = -3 **C** x = -2 and y = -6 **D** x = 2 and y = 6

14 The points A, B and C have position vectors $\overrightarrow{OA} = -2\underline{i} - 3\underline{j}$, $\overrightarrow{OB} = 2\underline{i} + 3\underline{j}$ and $\overrightarrow{OC} = 8\underline{i} - \underline{j}$.

(a) Find the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{AC} in component form.

(b) Find $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ and $|\overrightarrow{AC}|$.

(c) Show that $\triangle ABC$ is a right-angled triangle.

(d) Find the position vector of a point D such that ABCD forms a square.

(e) Find the vector \overrightarrow{BD} , the other diagonal of the square *ABCD*.

(f) Show that the diagonals of the square ABCD bisect at right angles.