1 Sketch the inverse relation for each of the following.

a

b

c

d

e

 \mathbf{f}

g

h

i

2 Which of the relations in question 1 have an inverse that is a function?

10. SHow that the functions f(x) and g(x) are inverses of each other by showing that f(g(x)) = x and g(f(x)) = x

a)	f(x) = x + 7	and	g(x) = x - 7
----	--------------	-----	--------------

b) $f(x) = 5x \text{ and } g(x) = \frac{x}{5}$

c)
$$f(x) = 2x + 2$$
 and $g(x) = \frac{x}{2} - 1$

d) $f(x) = x^3 + 1$ and $g(x) = \sqrt[3]{x - 1}$

e)
$$f(x) = \frac{1}{x+3}$$
 and $g(x) = \frac{1}{x} - 3$

f) $f(x) = \frac{x-1}{x+2}$ and $g(x) = \frac{2x+1}{1-x}$

4 Find the inverse function for each of the following functions. For each inverse, make y the

a
$$y = \frac{1}{x} - 2$$

b
$$y = \frac{1}{r-1}$$

$$y = \frac{x-3}{x+3}$$

a
$$y = \frac{1}{x} - 2$$
 b $y = \frac{1}{x - 1}$ **c** $y = \frac{x - 3}{x + 3}$ **d** $y = \frac{2x}{5 - x}$

- 3 For each of the following, find the inverse function and state the domain and range of the inverse.

- (a) f(x) = 2x 4 (b) $f(x) = x^2 1, x \ge 0$ (c) $g(x) = \sqrt{x 3}$ (d) $f(x) = \sqrt{9 x^2}, -3 \le x \le 0$

- **6** Show that the following pairs of functions are inverses by showing that f(g(x)) = g(f(x)) = x.
- (d) $f(x) = 2x x^2$, $x \ge 1$ and $g(x) = 1 + \sqrt{1 x}$, $x \le 1$ (e) $f(x) = \frac{1}{2x 1}$, $x > \frac{1}{2}$ and $g(x) = \frac{x + 1}{2x}$, x > 0