- 1 On an Argand diagram, point A represents the complex number α . Point B is located so that the vector \overrightarrow{OB} is the result of rotating \overrightarrow{OA} anticlockwise by $\frac{2\pi}{3}$ and then halving its length. Which complex number represents

- A $\frac{\pi}{3}\alpha$ B $\alpha\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ C $\alpha\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$ D $\frac{\alpha}{2}\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$
- 2 On a complex plane, P represents z = -3 + 4i and Q represents the complex number w. Find w so that triangle OPQ is:
 - (a) an isosceles right-angled triangle with the right angle at O
 - (b) an isosceles right-angled triangle with the right angle at P
 - (c) right-angled at O, with OQ twice the length of OP.

GEOMETRICAL REPRESENTATION OF A COMPLEX NUMBER AS A VECTOR
3 Point <i>E</i> is the centre of a square <i>ABCD</i> (labelled anticlockwise) on an Argand diagram. <i>E</i> and <i>A</i> are the points corresponding to $-2 + i$ and $1 + 5i$ respectively. Find the complex numbers represented by the points <i>B</i> , <i>C</i> and <i>D</i> .

- **4** (a) If $z_1 = 6 + 8i$ and $|z_2| = 15$, show that the greatest possible value of $|z_1 + z_2|$ is 25. (b) If $|z_1 + z_2|$ takes this greatest value, find z_2 in Cartesian form.

8 z_1 and z_2 are two complex numbers of equal moduli, with $\arg z_1 = \theta_1$ and $\arg z_2 = \theta_2$. Use an Argand diagram to find the values of $\arg(z_1+z_2)$ and $\arg(z_1-z_2)$ in terms of θ_1 and θ_2 .

- **9** The points *P* and *Q* in the complex plane correspond to the complex numbers *z* and *w* respectively. Triangle *OPQ* is right-angled and isosceles with *OP* = *OQ*.
 - (a) Show that $w^2 + z^2 = 0$.
 - (b) If *OPRQ* is a square, find (in terms of *z*) the complex number represented by *E*, the point of intersection of the diagonals of the square.

- **10** On an Argand diagram, ABCD is a square. OE and OF are parallel to and equal in length to AB and AD respectively. The vertices A and B correspond to the complex numbers w_1 and w_2 respectively.
 - (a) Explain why the point *E* corresponds to $w_2 w_1$.
 - **(b)** What complex number corresponds to the point *F*?
 - (c) What complex number corresponds to the vertex *D*?

- **11** z_1 and z_2 are two complex numbers such that $\frac{z_1 + z_2}{z_1 z_2} = 2i$.
 - (a) Show that $|z_1| = |z_2|$.
 - **(b)** If α is the angle between the vectors representing z_1 and z_2 , show that $\tan \frac{\alpha}{2} = \frac{1}{2}$
 - (c) Show that $z_2 = \frac{1}{5}(3+4i)z_1$.